SIGN 153 • British guideline on the management of asthma

A national clinical guideline September 2016
KEY TO EVIDENCE STATEMENTS AND GRADES OF RECOMMENDATIONS

LEVELS OF EVIDENCE

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1++</td>
<td>High-quality meta-analyses, systematic reviews of RCTs, or RCTs with a very low risk of bias</td>
</tr>
<tr>
<td>1+</td>
<td>Well-conducted meta-analyses, systematic reviews, or RCTs with a low risk of bias</td>
</tr>
<tr>
<td>1</td>
<td>Meta-analyses, systematic reviews, or RCTs with a high risk of bias</td>
</tr>
<tr>
<td>2++</td>
<td>High-quality systematic reviews of case-control or cohort studies, with a very low risk of confounding or bias and a high probability that the relationship is causal</td>
</tr>
<tr>
<td>2+</td>
<td>Well-conducted case-control or cohort studies with a low risk of confounding or bias and a moderate probability that the relationship is causal</td>
</tr>
<tr>
<td>2</td>
<td>Case-control or cohort studies with a high risk of confounding or bias and a significant risk that the relationship is not causal</td>
</tr>
<tr>
<td>3</td>
<td>Non-analytic studies, eg case reports, case series</td>
</tr>
<tr>
<td>4</td>
<td>Expert opinion</td>
</tr>
</tbody>
</table>

GRADES OF RECOMMENDATION

Note: The grade of recommendation relates to the strength of the evidence on which the recommendation is based. It does not reflect the clinical importance of the recommendation.

<table>
<thead>
<tr>
<th>GRADE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>At least one meta-analysis, systematic review, or RCT rated as 1++, and directly applicable to the target population; or A body of evidence consisting principally of studies rated as 1+, directly applicable to the target population, and demonstrating overall consistency of results</td>
</tr>
<tr>
<td>B</td>
<td>A body of evidence including studies rated as 2++, directly applicable to the target population, and demonstrating overall consistency of results; or Extrapolated evidence from studies rated as 1++ or 1+</td>
</tr>
<tr>
<td>C</td>
<td>A body of evidence including studies rated as 2+, directly applicable to the target population and demonstrating overall consistency of results; or Extrapolated evidence from studies rated as 2++</td>
</tr>
<tr>
<td>D</td>
<td>Evidence level 3 or 4; or Extrapolated evidence from studies rated as 2+</td>
</tr>
</tbody>
</table>

GOOD PRACTICE POINTS

- Recommended best practice based on the clinical experience of the guideline development group

NHS Evidence has accredited the process used by Scottish Intercollegiate Guidelines Network to produce guidelines. Accreditation is applicable to guidance produced using the processes described in SIGN 50: a guideline developer’s handbook, 2011 edition (www.sign.ac.uk/guidelines/fulltext/50/index.html). More information on accreditation can be viewed at www.evidence.nhs.uk. Healthcare Improvement Scotland (HIS) is committed to equality and diversity and assesses all its publications for likely impact on the six equality groups defined by age, disability, gender, race, religion/belief and sexual orientation.

SIGN guidelines are produced using a standard methodology that has been [equality impact assessed](http://www.sign.ac.uk/guidelines/fulltext/50/index.html) to ensure that these equality aims are addressed in every guideline. This methodology is set out in the current version of SIGN 50, our guideline manual, which can be found at www.sign.ac.uk/guidelines/fulltext/50/index.html. The EQIA assessment of the manual can be seen at www.sign.ac.uk/pdf/sign50eqia.pdf. The full report in paper form and/or alternative format is available on request from the Healthcare Improvement Scotland Equality and Diversity Officer.

Every care is taken to ensure that this publication is correct in every detail at the time of publication. However, in the event of errors or omissions corrections will be published in the web version of this document, which is the definitive version at all times. This version can be found on our web site www.sign.ac.uk.
Contents

1. **Introduction** ... 1
 1.1 The need for a guideline .. 1
 1.2 Remit of the guideline .. 2
 1.3 Statement of intent ... 5

2. **Key recommendations** ... 8
 2.1 Diagnosis and monitoring .. 8
 2.2 Supported self management ... 9
 2.3 Non-pharmacological management 10
 2.4 Pharmacological management 10
 2.5 Inhaler devices .. 10
 2.6 Acute asthma ... 11
 2.7 Difficult asthma ... 12
 2.8 Asthma in pregnancy ... 12
 2.9 Occupational asthma.. 12

3. **Diagnosis** ... 13
 3.1 Definition and overarching principles 13
 3.2 Predictive value of individual symptoms, signs and diagnostic tests .. 14
 3.3 Practical approach to diagnosis .. 22
 3.4 Organisation of diagnostic services 31
 3.5 Wheezing in pre-school children and the future risk of developing persistent asthma 32

4. **Monitoring asthma** ... 33
 4.1 Monitoring asthma in children 33
 4.2 Monitoring asthma in adults .. 34
 4.3 Monitoring children in primary care 34
 4.4 Monitoring adults in primary care 35

5. **Supported self management** 41
 5.1 Effectiveness of supported self management 41
 5.2 Components of a self-management programme .. 42
 5.3 Self management in specific patient groups 45
 5.4 Adherence and concordance... 47
 5.5 Implementation in practice ... 50

6. **Non-pharmacological management** 52
 6.1 Primary prevention ... 52
 6.2 Secondary non-pharmacological prevention 57

7. **Pharmacological management** 64
 7.1 Intermittent reliever therapy ... 65
 7.2 Regular preventer therapy ... 65
 7.3 Initial add-on therapy ... 73
 7.4 Additional add-on therapies ... 74
 7.5 High-dose therapies .. 76
 7.6 Continuous or frequent use of oral steroids 77
 7.7 Other medications and potential steroid tablet-sparing treatments 80
 7.8 Immunotherapy for asthma ... 82
 7.9 Bronchial thermoplasty ... 83
 7.10 Decreasing treatment ... 83
 7.11 Specific management issues .. 84

8. **Inhaler devices** .. 87
 8.1 Technique and training .. 87
 8.2 β₂ agonist delivery ... 87
 8.3 Inhaled corticosteroids for stable asthma 88
 8.4 Prescribing devices .. 88
 8.5 Use and care of spacers ... 89

9. **Management of acute asthma** 90
 9.1 Lessons from asthma deaths and near-fatal asthma .. 90
 9.2 Acute asthma in adults ... 92
 9.3 Treatment of acute asthma in adults 95
 9.4 Further investigation and monitoring 101
 9.5 Asthma management protocols and proformas 101
 9.6 Hospital discharge and follow up 101
 9.7 Acute asthma in children .. 102
1 Introduction

1.1 THE NEED FOR A GUIDELINE

Asthma is a common condition which produces a significant workload for general practice, hospital outpatient clinics and inpatient admissions. It is clear that much of this morbidity relates to poor management particularly around the use of preventative medicine.

In 1999 the British Thoracic Society (BTS) and the Scottish Intercollegiate Guidelines Network (SIGN) agreed to jointly produce a comprehensive new asthma guideline, both having previously published guidance on asthma. The original BTS guideline dated back to 1990 and the SIGN guidelines to 1996. Both organisations recognised the need to develop the new guideline using evidence-based methodology explicitly. The joint process was further strengthened by collaboration with Asthma UK, the Royal College of Physicians of London, the Royal College of Paediatrics and Child Health, the General Practice Airways Group (now Primary Care Respiratory Society UK), and the British Association of Accident and Emergency Medicine (now the College of Emergency Medicine). The outcome of these efforts was the British Guideline on the Management of Asthma published in 2003.1

The 2003 guideline was developed using SIGN methodology.2 Electronic literature searches extended to 1995, although some sections required searches back as far as 1966. The pharmacological management section utilised the North of England Asthma guideline to address some of the key questions on adult management.3 The North of England guideline literature search covered a period from 1984 to 1997, and SIGN augmented this with a search from 1997 onwards.

1.1.1 UPDATING THE EVIDENCE

Between 2004 and 2012 sections within the guideline were updated annually. Subsequently, updating moved to a biennial basis, beginning with the 2014 update. This edition of the guideline was issued in 2016. All updates were made available on both the BTS (www.brit-thoracic.org.uk) and SIGN (www.sign.ac.uk) websites. Any updates to the guideline in the period between scheduled updates will be noted on the SIGN and BTS websites.

A summary of the search histories for each section is given in Annex 1. It is hoped that this asthma guideline continues to serve as a basis for high quality management of both acute and chronic asthma and a stimulus for research into areas of management for which there is little evidence.
1.2 REMIT OF THE GUIDELINE

1.2.1 OVERALL OBJECTIVES

This guideline provides recommendations based on current evidence for best practice in the management of asthma. It makes recommendations on management of adults, including pregnant women, adolescents, and children with asthma. In sections 7 and 8 on pharmacological management and inhaler devices, respectively, each recommendation has been graded and the supporting evidence assessed for adults and adolescents over 12 years old, children 5–12 years, and children under 5 years. Further information on managing asthma in adolescents (10–19 years of age as defined by the World Health Organisation) is given in section 11.

The guideline considers asthma management in all patients with a diagnosis of asthma, although there is less evidence available for people at either age extreme. The guideline does not cover patients whose primary diagnosis is not asthma, for example those with chronic obstructive pulmonary disease or cystic fibrosis, but patients with these conditions can also have asthma. Under these circumstances many of the principles set out in this guideline will apply to the management of their asthma symptoms.

The key questions on which the guideline is based can be found on the SIGN website, www.sign.ac.uk, as part of the supporting material for this guideline.

1.2.2 TARGET USERS OF THE GUIDELINE

This guideline will be of particular interest to healthcare professionals involved in the care of people with asthma including general practitioners, consultants and specialists in respiratory medicine, nurses and pharmacists. The guideline will also be of interest to people with asthma, their parents and carers; those who interact with people with asthma outside of the NHS, such as teachers; voluntary organisations with an interest in asthma; and those planning the delivery of services in the NHS in England, Wales, Northern Ireland and Scotland.

1.2.3 SUMMARY OF UPDATES TO THE GUIDELINE, BY SECTION

<table>
<thead>
<tr>
<th></th>
<th>Key recommendations</th>
<th>2014, 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Monitoring asthma</td>
<td>2008, 2011</td>
</tr>
<tr>
<td>8</td>
<td>Inhaler devices</td>
<td>2005, 2014</td>
</tr>
<tr>
<td>11</td>
<td>Asthma in adolescents</td>
<td>2011</td>
</tr>
</tbody>
</table>
In 2004 the sections on pharmacological management, acute asthma and patient self management and compliance were revised. In 2005 sections on pharmacological management, inhaler devices, outcomes and audit, and asthma in pregnancy were updated, and occupational asthma was rewritten with help from the British Occupational Health Research Foundation.

In 2006 the pharmacological management section was again updated. While the web-based alterations appeared successful, it was felt an appropriate time to consider producing a new paper-based version in which to consolidate the various yearly updates. In addition, between 2006-2011, the guideline had input from colleagues from Australia and New Zealand.

The 2008 guideline considered literature published up to March 2007. It contained a completely rewritten section on diagnosis for both adults and children, a section on special situations which included occupational asthma, asthma in pregnancy and the new topic of difficult asthma, updated sections on pharmacological and non-pharmacological management, and amalgamated sections on patient education and compliance, and on organisation of care and audit.

The 2009 revisions included updates to pharmacological management, the management of acute asthma and asthma in pregnancy. Update searches were conducted on inhaler devices but there was insufficient new evidence to change the existing recommendations. The annexes were also amended to reflect current evidence.

The 2011 revisions included updates to monitoring asthma and pharmacological management, and a new section on asthma in adolescents.

In 2014 the approach to updating the guideline changed and revisions were made to subsections throughout the guideline based on new evidence relating to specific key questions. In addition, major revisions were made to the section on non-pharmacological management, and the organisation and delivery of care and supported self management sections were revised. The structure of the guideline also changed, with a new section highlighting key recommendations for implementation from across the guideline (see section 2); the original section 7 on special situations split into four separate sections covering difficult asthma, asthma in adolescents, asthma in pregnancy and occupational asthma, and the revised section 4 on supported self management moved to the beginning of the guideline.

Also new for 2014 was the replacement of the term ‘asthma exacerbation’ with the new term ‘asthma attack’. The guideline development group believes that it is more understandable and gives a clearer indication of the need for action.

The 2016 version includes a complete revision of the section on diagnosis, a major update to the section on pharmacological management of asthma, and updates to the sections on supported self management, non-pharmacological management of asthma, acute asthma, difficult asthma, occupational asthma, and organisation and delivery of care.
SUMMARY OF UPDATES TO THE 2016 EDITION OF THE GUIDELINE, BY SECTION

<table>
<thead>
<tr>
<th>Section</th>
<th>New Recommendations</th>
<th>Updated Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Key recommendations</td>
<td>New: 2.1.1 Diagnosis</td>
<td>Updated: 2.5 Inhaler devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor updates: 2.3 Non-pharmacological management, 2.4 Pharmacological management, 2.6.1 Acute asthma in adults</td>
</tr>
<tr>
<td>3 Diagnosis</td>
<td>New: 3.1 Definition and overarching principles, 3.2 Predictive value of individual symptoms, signs and diagnostic tests, 3.3 Practical approach to diagnosis</td>
<td></td>
</tr>
<tr>
<td>4 Monitoring asthma</td>
<td>Not updated</td>
<td></td>
</tr>
<tr>
<td>5 Supported self management</td>
<td>New: 5.4.2 Assessing medication adherence</td>
<td>Updated: 5.4.1 Adherence to monitoring and treatment, 5.4.3 Interventions to improve medication adherence</td>
</tr>
<tr>
<td>6 Non-pharmacological management</td>
<td>Updated: 6.1.8 Weight reduction in overweight and obese patients, 6.2.8 Weight reduction in overweight and obese patients with asthma</td>
<td></td>
</tr>
<tr>
<td>7 Pharmacological management</td>
<td>New: 7.2 Table 9 Categorisation of inhaled corticosteroids by dose - adults and Table 10 Categorisation of inhaled corticosteroids by dose - children, 7.3.5 Maintenance and reliever therapy, 7.4 Additional add-on therapies, 7.4.2 Leukotriene receptor antagonists, 7.4.3 Tiotropium bromide, Figure 2 Summary of management in adults, Figure 3 Summary of management in children, 7.7.2 Anti-IL-5 monoclonal antibody, 7.7.3 Other agents</td>
<td>Updated: 7.1 Intermittent reliever therapy, 7.3.2 Inhaled long-acting β₂ agonist, 7.5 High-dose therapies, 7.7.1 Anti-IgE monoclonal antibody, 7.7.3 Other agents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor updates: 7.2.3 Frequency of dosing of inhaled corticosteroids, 7.2.4 Comparison of inhaled corticosteroids</td>
</tr>
<tr>
<td>8 Inhaler devices</td>
<td>Updated: 8.4 Prescribing devices</td>
<td>Minor updates: 8.5 Use and care of spacers</td>
</tr>
</tbody>
</table>
1.3 STATEMENT OF INTENT

This guideline is not intended to be construed or to serve as a standard of care. Standards of care are determined on the basis of all clinical data available for an individual case and are subject to change as scientific knowledge and technology advance and patterns of care evolve. Adherence to guideline recommendations will not ensure a successful outcome in every case, nor should they be construed as including all proper methods of care or excluding other acceptable methods of care aimed at the same results. The ultimate judgement must be made by the appropriate healthcare professional(s) responsible for clinical decisions regarding a particular clinical procedure or treatment plan. This judgement should only be arrived at through a process of shared decision making with the patient, covering the diagnostic and treatment choices available. It is advised, however, that significant departures from the national guideline or any local guidelines derived from it should be fully documented in the patient's medical records at the time the relevant decision is taken.
1.3.1 INFLUENCE OF FINANCIAL AND OTHER INTERESTS

It has been recognised that financial interests in, or close working relationships with, pharmaceutical companies may have an influence on the interpretation of evidence from clinical studies.

It is not possible to completely eliminate any possible bias from this source, nor even to quantify the degree of bias with any certainty. SIGN requires that all those involved in the work of guideline development should declare all financial interests, whether direct or indirect, annually for as long as they are actively working with the organisation. By being explicit about the influences to which contributors are subjected, SIGN acknowledges the risk of bias and makes it possible for guideline users or reviewers to assess for themselves how likely it is that the conclusions and guideline recommendations are based on a biased interpretation of the evidence.

Signed copies are retained by the SIGN Executive and a register of interests is available in the supporting material section for this guideline at www.sign.ac.uk

1.3.2 PATIENT VERSION

Patient versions of this guideline are available from the SIGN website, www.sign.ac.uk

1.3.3 PRESCRIBING OF LICENSED MEDICINES OUTWITH THEIR MARKETING AUTHORISATION

Recommendations within this guideline are based on the best clinical evidence. Some recommendations may be for medicines prescribed outwith the marketing authorisation (MA) also known as product licence. This is known as 'off label' use.

Medicines may be prescribed off label in the following circumstances:

- for an indication not specified within the marketing authorisation
- for administration via a different route
- for administration of a different dose
- for a different patient population.

An unlicensed medicine is a medicine which does not have MA for medicinal use in humans.

Generally 'off label' prescribing of medicines becomes necessary if the clinical need cannot be met by licensed medicines within the marketing authorisation. Such use should be supported by appropriate evidence and experience.\(^5\)

"Prescribing medicines outside the conditions of their marketing authorisation alters (and probably increases) the prescribers’ professional responsibility and potential liability."\(^5\)
The General Medical Council (GMC) recommends that when prescribing a medicine ‘off label’, doctors should:

- be satisfied that such use would better serve the patient’s needs than an authorised alternative (if one exists)
- be satisfied that there is sufficient evidence/experience of using the medicines to show its safety and efficacy, seeking the necessary information from appropriate sources
- record in the patient’s clinical notes the medicine prescribed and, when not following common practice, the reasons for the choice
- take responsibility for prescribing the medicine and for overseeing the patient’s care, including monitoring the effects of the medicine.

Non-medical prescribers should ensure that they are familiar with the legislative framework and their own professional prescribing standards.

Prior to any prescribing, the licensing status of a medication should be checked in the summary of product characteristics (www.medicines.org.uk). The prescriber must be competent, operate within the professional code of ethics of their statutory bodies and the prescribing practices of their employers.

1.3.4 ADDITIONAL ADVICE ON THE USE OF NEW AND EXISTING MEDICINES AND TREATMENTS

The National Institute for Health and Care Excellence (NICE) develops multiple and single technology appraisals that make recommendations on the use of new and existing medicines and treatments within the NHS in England and Wales. Healthcare Improvement Scotland reviews multiple technology appraisals and provides advice about their applicability for NHSScotland.

Single technology appraisals are not applicable to NHSScotland. The Scottish Medicines Consortium (SMC) provides advice to NHS Boards and their Area Drug and Therapeutics Committees about the status of all newly licensed medicines and new indications for established products.

Practitioners should be aware of this additional advice on medicines and treatments recommended in this guideline and that recommendations made by these organisations and restrictions on their use may differ between England and Wales and Scotland.
2 Key recommendations

The following recommendations were highlighted by the guideline development group as the key clinical recommendations that should be prioritised for implementation. The grade of recommendation relates to the strength of the supporting evidence on which the recommendation is based. It does not reflect the clinical importance of the recommendation.

In 2013, the National Institute for Health and Care Excellence published a quality standard for asthma comprising 11 quality statements. The quality statements draw on existing guidance including the SIGN/BTS British guideline on the management of asthma. Quality standards describe high priority areas for quality improvement with each quality standard consisting of a prioritised set of specific, concise and measurable statements. The quality statements are shown below under the key recommendations from the guideline that most closely relate to them.

2.1 DIAGNOSIS AND MONITORING

2.1.1 DIAGNOSIS

D Undertake a structured clinical assessment to assess the initial probability of asthma. This should be based on:

- a history of recurrent episodes (attacks) of symptoms, ideally corroborated by variable peak flow when symptomatic and asymptomatic
- symptoms of wheeze, cough, breathlessness and chest tightness that vary over time
- recorded observation of wheeze heard by a healthcare professional
- personal/family history of other atopic conditions (in particular, atopic eczema/dermatitis, allergic rhinitis)
- no symptoms/signs to suggest alternative diagnoses.

C Compare the results of diagnostic tests undertaken whilst a patient is asymptomatic with those undertaken when a patient is symptomatic to detect variation over time.

D Carry out quality-assured spirometry using the lower limit of normal to demonstrate airway obstruction, provide a baseline for assessing response to initiation of treatment and exclude alternative diagnoses.

- Obstructive spirometry with positive bronchodilator reversibility increases the probability of asthma.
- Normal spirometry in an asymptomatic patient does not rule out the diagnosis of asthma.
In patients with a high probability of asthma:
- record the patient as likely to have asthma and commence a carefully monitored initiation of treatment (typically six weeks of inhaled corticosteroids)
- assess the patient’s status with a validated symptom questionnaire, ideally corroborated by lung function tests (FEV₁ at clinic visits or by domiciliary serial peak flows)
- with a good symptomatic and objective response to treatment, confirm the diagnosis of asthma and record the basis on which the diagnosis was made
- if the response is poor or equivocal, check inhaler technique and adherence, arrange further tests and consider alternative diagnoses.

2.1.2 MONITORING ADULTS IN PRIMARY CARE

In adults, the following factors should be monitored and recorded in primary care:
- symptomatic asthma control
- lung function assessed by spirometry or by PEF
- asthma attacks, oral corticosteroid use and time off work since last assessment
- inhaler technique
- adherence
- bronchodilator reliance
- possession of and use of a self-management plan/personal action plan.

NICE quality statement 1: People with newly diagnosed asthma are diagnosed in accordance with BTS/SIGN guidance.
NICE quality statement 6: People with asthma who present with respiratory symptoms receive an assessment of their asthma control.

2.2 SUPPORTED SELF MANAGEMENT

A All people with asthma (and/or their parents or carers) should be offered self-management education which should include a written personalised asthma action plan and be supported by regular professional review.

A Prior to discharge, inpatients should receive written personalised asthma action plans, given by healthcare professionals with expertise in providing asthma education.

D Adherence to long-term asthma treatment should be routinely and regularly addressed by all healthcare professionals within the context of a comprehensive programme of accessible proactive asthma care.

NICE quality statement 3: People with asthma receive a written personalised action plan.
NICE quality statement 5: People with asthma receive a structured review at least annually.
NICE quality statement 9: People admitted to hospital with an acute exacerbation of asthma have a structured review by a member of a specialist respiratory team before discharge.
2.3 NON-PHARMACOLOGICAL MANAGEMENT

B Parents with asthma should be advised about the dangers, to themselves and to their children with asthma, of smoking, and be offered appropriate support to stop smoking.

B Weight-loss interventions (including dietary and exercise-based programmes) can be considered for overweight and obese adults and children with asthma to improve asthma control.

A Breathing exercise programmes (including physiotherapist-taught methods) can be offered to people with asthma as an adjuvant to pharmacological treatment to improve quality of life and reduce symptoms.

2.4 PHARMACOLOGICAL MANAGEMENT

✓ Before initiating a new drug therapy practitioners should check adherence with existing therapies, check inhaler technique, and eliminate trigger factors.

A A A Inhaled corticosteroids are the recommended preventer drug for adults and children for achieving overall treatment goals.

A The first choice as add-on therapy to inhaled corticosteroids in adults is an inhaled long-acting β_2 agonist, which should be considered before increasing the dose of inhaled corticosteroids.

D D If asthma control remains suboptimal after the addition of an inhaled long-acting β_2 agonist then the dose of inhaled corticosteroids should be increased from low dose to medium dose in adults or from very low dose to low dose in children (5–12 years), if not already on these doses.

2.5 INHALER DEVICES

B ✓ ✓ Prescribe inhalers only after patients have received training in the use of the device and have demonstrated satisfactory technique.

✓ Generic prescribing of inhalers should be avoided as this might lead to people with asthma being given an unfamiliar inhaler device which they are not able to use properly.

✓ In children, a pMDI and spacer are the preferred method of delivery of β_2 agonists and inhaled corticosteroids. A face mask is required until the child can breathe reproducibly using the spacer mouthpiece. Where this is ineffective a nebuliser may be required.

NICE quality statement 4: People with asthma are given specific training and assessment in inhaler technique before starting any new inhaler treatment.
2.6 ACUTE ASTHMA

2.6.1 ADULTS

D Refer to hospital any patients with features of acute severe or life-threatening asthma.

C Give controlled supplementary oxygen to all hypoxaemic patients with acute severe asthma titrated to maintain an SpO2 level of 94–98%. Do not delay oxygen administration in the absence of pulse oximetry but commence monitoring of SaO2 as soon as it becomes available.

A Use high-dose inhaled β2 agonists as first-line agents in patients with acute asthma and administer as early as possible. Reserve intravenous β2 agonists for those patients in whom inhaled therapy cannot be used reliably.

A Give steroids in adequate doses to all patients with an acute asthma attack.

2.6.2 CHILDREN

✓ Children with life-threatening asthma or SpO2 <94% should receive high-flow oxygen via a tight fitting face mask or nasal cannula at sufficient flow rates to achieve normal saturations of 94–98%.

A Inhaled β2 agonists are the first-line treatment for acute asthma in children.

A Give oral steroids early in the treatment of acute asthma attacks in children.

2.6.3 ALL PATIENTS

✓ It is essential that the patient’s primary care practice is informed within 24 hours of discharge from the emergency department or hospital following an asthma attack. Ideally this communication should be directly with a named individual responsible for asthma care within the practice, by means of fax or email.

NICE quality statement 7: People with asthma who present with an exacerbation of their symptoms receive an objective measurement of severity at the time of presentation.

NICE quality statement 8: People aged 5 years or older presenting to a healthcare professional with a severe or life-threatening acute exacerbation of asthma receive oral or intravenous steroids within one hour of presentation.

NICE quality statement 10: People who received treatment in hospital or through out-of-hours services for an acute exacerbation of asthma are followed up by their own GP practice within two working days of treatment.
2.7 DIFFICULT ASTHMA

Patients with difficult asthma should be systematically evaluated, including:
- confirmation of the diagnosis of asthma, and
- identification of the mechanism of persisting symptoms and assessment of adherence to therapy.

NICE quality statement 11: People with difficult asthma are offered an assessment by a multidisciplinary difficult asthma service.

2.8 ASTHMA IN PREGNANCY

Women should be advised of the importance of maintaining good control of their asthma during pregnancy to avoid problems for both mother and baby.

Counsel women with asthma regarding the importance and safety of continuing their asthma medications during pregnancy to ensure good asthma control.

2.9 OCCUPATIONAL ASTHMA

In patients with adult onset, or reappearance of childhood asthma, healthcare professionals should consider that there may be an occupational cause.

Adults with airflow obstruction should be asked:
- Are you better on days away from work?
- Are you better on holiday?
Those with positive answers should be investigated for occupational asthma.

NICE quality statement 2: Adults with new onset asthma are assessed for occupational causes.
3 Diagnosis

The diagnosis of asthma is a clinical one. The absence of consistent gold-standard diagnostic criteria means that it is not possible to make unequivocal evidence-based recommendations on how to make a diagnosis of asthma.

Section 3.1 defines asthma and highlights overarching principles, section 3.2 describes the diagnostic accuracy of individual symptoms, signs and diagnostic tests, and section 3.3 describes a pragmatic approach to establishing a diagnosis of asthma based on current evidence and the collective experience of the guideline development group.

3.1 DEFINITION AND OVERARCHING PRINCIPLES

3.1.1 DEFINITION

Central to all definitions is the presence of symptoms (more than one of wheeze, breathlessness, chest tightness, cough) and of variable airflow obstruction. More recent descriptions of asthma, in both children and adults, have included airway hyper-responsiveness and airway inflammation as components of the disease reflecting a developing understanding of the diverse subtypes (phenotypes and endotypes) of asthma and their underpinning mechanisms.8

3.1.2 TESTS INFLUENCE THE PROBABILITY OF ASTHMA BUT DO NOT PROVE A DIAGNOSIS

There is no single diagnostic test for asthma. Building on the definitions in section 3.1.1, diagnosis is based on clinical assessment (see section 3.3) supported by objective tests that seek to demonstrate variable airflow obstruction or the presence of airway inflammation (see section 3.2). Both clinical assessment of symptoms and signs and objective tests have significant false positive and false negative rates (see Table 1).

Objective tests influence the probability of a diagnosis of asthma, but the magnitude of that influence depends on the probability prior to testing as well as the predictive value of the test. Therefore, in a patient with a very high probability of asthma prior to testing, the results of a diagnostic test with a substantial false negative rate will have minimal influence. In contrast, in a patient with an intermediate or low probability of asthma, a positive diagnostic test may significantly shift the probability towards an asthma diagnosis (see section 3.3).

3.1.3 ASTHMA STATUS AND THE OUTCOME OF DIAGNOSTIC TESTS FOR ASTHMA VARY OVER TIME

Diagnostic tests are typically performed at a single point in time whereas asthma status varies over time. Patients on primary care asthma registers who have not received prescriptions for a year are considered to be ‘inactive’9 and there is evidence that some patients shift from ‘inactive’ to ‘active’ status (and vice versa) over time.10-12

Objective tests performed when patients are asymptomatic or during an ‘inactive’ period may result in false negatives. For example, in primary care patients with intermittent asthma symptoms, spirometry confirmed obstruction in 16–39% of patients,13-15 and bronchodilator reversibility was demonstrated in only 15–17% of patients.15-17 In contrast, in a population admitted to hospital with a physician diagnosed asthma attack, 83% had obstructive lung function.18 In a prospective longitudinal study in primary care, fractional exhaled nitric oxide (FeNO) was only positive in 40% of people with diagnosed asthma at 12 months, and one in five were falsely negative.12
Time may, however, be used to advantage if objective signs and tests when a patient is symptomatic are compared to measurements when they are asymptomatic. In the event of diagnostic uncertainty it may be helpful to repeat investigations.

C Compare the results of diagnostic tests undertaken whilst a patient is asymptomatic with those undertaken when a patient is symptomatic to detect variation over time.

3.2 PREDICTIVE VALUE OF INDIVIDUAL SYMPTOMS, SIGNS AND DIAGNOSTIC TESTS

The individual symptoms and signs and the diagnostic tests and thresholds typically used in clinical practice and their performance in diagnostic studies are shown in Table 1. These data, however, need to be interpreted with caution. The performance of the diagnostic tests, as assessed by reported sensitivities/specificities and positive and negative predictive values (PPV/NPV), vary widely. This reflects methodological considerations such as the use of different reference (gold) standards and variation in defined thresholds for tests, as well as the diverse clinical contexts for these studies (see Table 1). The majority of studies assessing diagnostic test accuracy recruited patients from secondary care clinics; the predictive value of tests in people presenting to primary care with undifferentiated respiratory symptoms is less well reported.

The, often poor, predictive value of objective tests reinforces the need for test results to be used in conjunction with a structured clinical assessment to assess the probability of asthma in an individual presenting with respiratory symptoms suggestive of asthma (see section 3.3.1).

3.2.1 SYMPTOMS AND SIGNS

The predictive value of isolated symptoms or signs is poor (see Table 1). In adults, isolated symptoms of cough, wheeze and shortness of breath are neither sensitive nor specific for asthma. Almost all children with asthma have intermittent cough, wheeze and/or exercise induced symptoms, but only about a quarter of children with these symptoms have asthma. Enquiring about the episodic nature of symptoms (for example, acute attacks) as opposed to current symptoms may improve the predictive value.

Wheezing is one of a number of respiratory noises that occur in children. Parents often use the term wheezing as a non-specific label to describe any abnormal respiratory noise. It is important to distinguish wheezing – a continuous, high-pitched musical sound coming from the chest – from other respiratory noises, such as stridor or rattly breathing.

Wheeze heard by a healthcare professional on auscultation is an important sign that increases the probability of asthma. Combinations of symptoms and signs are clinically more helpful than isolated symptoms, especially in children. For example, two thirds of children with a cluster of cough, wheeze, chest tightness, dyspnoea, and exercise symptoms have asthma. Asthma is very unlikely if a child does not have at least some of these symptoms and signs.
3.2.2 **SPIROMETRY AND BRONCHODILATOR REVERSIBILITY**

Spirometry is the investigation of choice for identification of airflow obstruction and is widely available, including in primary care, although training is required to obtain reliable recordings and to interpret the results, particularly in children. The probability of asthma, differential diagnosis (see Tables 4 and 5) and approach to investigation is different in patients with and without airflow obstruction at the time baseline spirometry is undertaken.

Confirmation of an asthma diagnosis hinges on demonstration of airflow variability over short periods of time. A normal spirogram obtained when the patient is asymptomatic does not, therefore, exclude the diagnosis of asthma. Alternative reasons for obstructive spirometry, for example chronic obstructive pulmonary disease (COPD) in adults, must also be considered. In a population of adults presenting to primary care with new respiratory symptoms, only a third of those with obstructive spirometry had asthma and almost two thirds had COPD. Only a quarter of those subsequently thought to have asthma had obstructive spirometry at the time of assessment.

Measuring lung function in children under 5 years of age is difficult and requires techniques which are not widely available outwith specialist centres. For developmentally mature children over five years of age conventional lung function testing is possible in most settings with an operator trained and experienced in undertaking paediatric spirometry. As in adults, normal results on testing, especially if performed when the child is asymptomatic, do not exclude a diagnosis of asthma. Asthma severity classified by symptoms and use of medicines correlates poorly with single measurements of forced expiratory volume in one second (FEV,) and other spirometric indices: FEV, is often normal in children with persistent asthma, and abnormal results may be seen in children with other respiratory diseases.

In children, the relationship between asthma symptoms and lung function tests, including bronchodilator reversibility, is complex. Measures of gas trapping (residual volume and the ratio of residual volume to total lung capacity) may be superior to measurement of expiratory flow at detecting airways obstruction especially in asymptomatic children.

Operators should be trained to undertake quality-assured spirometry and be experienced in providing tests in the relevant age groups.

The FEV, forced vital capacity (FVC) ratio changes with age. In young children it can be as high as 90% so use of the commonly used fixed ratio of 70% will substantially underestimate airflow limitation. Conversely, in adults over 40 years, levels below 70% may be normal and use of a 70% threshold will overestimate obstruction. Accordingly, use of lower limits of normal is now recommended and is becoming easily available through software built into spirometers. Detailed data about normal values for different age groups is available from the report of the European Respiratory Society Global Lung function Initiative. From a practical perspective, the spirometers widely used in clinical practice provide the lower and upper limits of the normal range of spirometry parameters (although they usually use the fixed ratio to generate the automated interpretation reports).
In adults with obstructive spirometry, an improvement in FEV\textsubscript{1} of 12% or more in response to either β\textsubscript{2} agonists or corticosteroid treatment trials, together with an increase in volume of 200 ml or more, is regarded as a positive test,34 although some people with COPD can have significant reversibility.35 An improvement of greater than 400 ml in FEV\textsubscript{1} strongly suggests underlying asthma. In children, an improvement in FEV\textsubscript{1} of 12% or more is regarded as a positive test.34

D Carry out quality-assured spirometry using the lower limit of normal to demonstrate airway obstruction, provide a baseline for assessing response to initiation of treatment and exclude alternative diagnoses.

- Obstructive spirometry with positive bronchodilator reversibility increases the probability of asthma.
- Normal spirometry in an asymptomatic patient does not rule out the diagnosis of asthma.

3.2.3 TESTS OF VARIABILITY IN LUNG FUNCTION

Direct challenge tests

The most widely used method of measuring airway responsiveness relies on measuring response in terms of change in FEV\textsubscript{1}, a set time after inhalation of increasing concentrations of histamine or methacholine. The agent can be delivered by breath-activated dosimeter, via a nebuliser using tidal breathing, or via a hand held atomiser.36 The response is usually quantified as the concentration (or dose) required to cause a 20% fall in FEV\textsubscript{1} (PC\textsubscript{20} or PD\textsubscript{20}) calculated by linear interpolation of the log concentration or dose response curve. A PC\textsubscript{20} of 8 mg/ml or less is regarded as positive.37-39

Two thirds, or more, of adults with a positive methacholine challenge have asthma and the false negative rate is less than 10%.19 Tests of airway responsiveness are of little value in patients with established airflow obstruction as the specificity is low.40,41

Methacholine challenge tests in schoolchildren only marginally increase the diagnostic accuracy after the symptom history is taken into account.42 However, a negative methacholine test in a child, which has a high negative predictive value, makes a diagnosis of asthma improbable.30

Indirect challenge tests

Other potentially helpful tests of variability in lung function include indirect challenges such as exercise and inhaled mannitol.43 A positive response to these indirect stimuli, such as a fall in FEV\textsubscript{1} of greater than 15%, is a specific marker of asthma but the tests are less sensitive than challenges using methacholine and histamine, particularly in patients tested while on treatment.43,44

In children, a positive exercise challenge test (as opposed to a history of exercise-induced symptoms) is highly predictive of asthma with a false positive rate of less than 10%.19 A negative response to an exercise challenge test is helpful in excluding asthma in children with exercise related breathlessness.45

Peak expiratory flow monitoring

Peak expiratory flow (PEF) should be recorded as the best of three forced expiratory blows from total lung capacity with a maximum pause of two seconds before blowing.46 The patient can be standing or sitting. Further blows should be done if the largest two PEF are not within 40 l/min.46
PEF is best used to provide an estimate of variability of airflow from multiple measurements made over at least two weeks. Increased variability may be evident from twice-daily readings. More frequent readings will result in a better estimate, but the improved precision is likely to be achieved at the expense of reduced patient compliance. Use of electronic meters and diaries with time and date stamps can overcome problems of compliance and accuracy when recording peak flows in paper diaries.

PEF variability is usually calculated as the difference between the highest and lowest PEF expressed as a percentage of the average PEF, although one study showed that three or more days a week with significant variability was more sensitive and specific than calculating mean differences.

The upper limit of the normal range for variability is around 20% using four or more PEF readings per day, but may be lower using twice-daily readings. Studies have shown sensitivities of between 3% and 46% for identifying physician-diagnosed asthma. One limitation of these epidemiological studies is that it is not always clear whether the participants were symptomatic at the time of the monitoring. PEF charting when asthma is ‘inactive’ is unlikely to confirm variability; one study showed that significant PEF variability was associated with respiratory symptoms in the previous week.

PEF records from frequent readings taken at work and away from work are useful when considering a diagnosis of occupational asthma (see section 13.3.1). A computer generated analysis of occupational records which provides an index of the work effect is available.

In children, serial measures of peak flow variability and FEV₁ show poor concordance with disease activity and do not reliably rule the diagnosis of asthma in or out.

In adults with no evidence of airflow obstruction on initial assessment, and in whom other objective tests are inconclusive but asthma remains a possibility, consider referral for challenge tests.

A peak flow recorded when symptomatic (e.g. during the assessment of an asthma attack) may be compared to a peak flow when asymptomatic (e.g. after recovery from an asthma attack) in order to confirm variability.

In adults, serial peak flow records may demonstrate variability in symptomatic patients, but should be interpreted with caution and with regard to the clinical context. There is no evidence to support the routine use of peak flow monitoring in the diagnosis of asthma in children.

Serial peak flows (at least four readings a day) are the initial investigation of choice in suspected occupational asthma.

3.2.4 TESTS TO DETECT EOSINOPHILIC AIRWAY INFLAMMATION OR ATOPY

Fractional exhaled nitric oxide (FeNO)

A positive FeNO test suggests eosinophilic inflammation and provides supportive, but not conclusive, evidence for an asthma diagnosis. There is overlap between the levels seen in normal non-asthmatic populations and in people with atopic asthma. There are some important confounders.
FeNO levels are:57–59

- increased in patients with allergic rhinitis exposed to allergen, even without any respiratory symptoms
- increased by rhinovirus infection in healthy individuals, but this effect is inconsistent in people with asthma
- increased in men; tall people; and by consumption of dietary nitrates
- lower in children
- reduced in cigarette smokers
- reduced by inhaled or oral steroids.

In steroid-naive adults, a FeNO level of 40 parts per billion (ppb) or more is regarded as positive; in schoolchildren a FeNO level of 35 ppb or more is regarded as a positive test.34

In eight studies in adults recruited from secondary care with symptoms suggestive of asthma, sensitivities for FeNO ranged from 43–88% and specificities from 60–92%. The PPV and NPV ranged from 54–95% and 65–93%, respectively (see Table 1).19 On this basis, approximately 1 in 5 people with a positive FeNO test will not have asthma (false positives), and conversely 1 in 5 people with a negative FeNO test will have asthma (false negatives). There are no data from primary care populations.

It is feasible to measure FeNO in children from the age of 3–4 years.60 In children, FeNO is closely linked with atopic status, age and height.61,62

D Use measurement of FeNO (if available) to find evidence of eosinophilic inflammation. A positive test increases the probability of asthma but a negative test does not exclude asthma.

Tests of atopic status

Positive skin-prick tests,63 blood eosinophilia ≥4%,64 or a raised allergen-specific immunoglobulin E (IgE) to a range of common aeroallergens65,66 increase the probability of asthma in schoolchildren and adults.34,63 The positive predictive values for individual tests are, however, poor (see Table 1). Non-atopic wheezing is as frequent as atopic wheezing in school-aged children.

D Use a previous record of skin-prick tests, blood eosinophilia of 4% or more, or a raised allergen-specific IgE to corroborate a history of atopic status, but do not offer these tests routinely as a diagnostic test for asthma.

Sputum eosinophil

Eosinophilic airway inflammation in adults can be assessed non-invasively using the induced sputum differential eosinophil count.57,67 Sputum induction is feasible in school-aged children but is technically demanding and time consuming and remains a research tool.68,69 Experience with induced sputum is limited to a few centres and more research needs to be done before any recommendations can be made on its use as a diagnostic test in clinical practice.
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description*</th>
<th>Parameter*</th>
<th>Range of predictive values* (Note that a single value indicates data from a single study)</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptoms and signs</td>
<td>The commonest symptoms assessed were cough and wheeze and, in adults, shortness of breath.</td>
<td>Cough in adults</td>
<td>Sens: 16–66%, Spec: 26–64%, PPV: 8–44%, NPV: 15–92%</td>
<td>As isolated symptoms cough, wheeze and shortness of breath are neither sensitive, nor specific for asthma. Most children with asthma have intermittent cough, wheeze and exercise-induced symptoms, but only about a quarter of children with these symptoms have asthma. Note that the single study in pre-school children compared current symptoms with a diagnosis of asthma two years later.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wheeze in adults</td>
<td>Sens: 9–76%, Spec: 34–87%, PPV: 10–81%, NPV: 28–94%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dyspnoea in adults</td>
<td>Sens: 11–73%, Spec: 38–71%, PPV: 41–59%, NPV: 26–70%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cough in schoolchildren<sup>20</sup></td>
<td>Sens: 63%, Spec: 75%, PPV: 14%, NPV: 97%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wheeze in children<sup>20</sup></td>
<td>Sens: 59%, Spec: 93%, PPV: 34%, NPV: 97%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cough in pre-school children</td>
<td>Sens: 88%, Spec: 7%, PPV: 76%, NPV: 15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wheeze in pre-school children</td>
<td>Sens: 54%, Spec: 57%, PPV: 80%, NPV: 27%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shortness of breath in pre-school children</td>
<td>Sens: 76%, Spec: 52%, PPV: 84%, NPV: 40%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diurnal symptoms in adults</td>
<td>Sens: 30–56%, Spec: 36–83%, PPV: 49–76%, NPV: 18–67%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Episodic symptoms in children<sup>21,22</sup></td>
<td>Sens: 36–93%, Spec: 35–93%, PPV: 40–94%, NPV: 62–90%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nocturnal symptoms in children<sup>21,22</sup></td>
<td>Sens: 57–84%, Spec: 58–78%, PPV: 64–85%, NPV: 57–82%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinations of symptoms (typically cough, wheeze, chest tightness, dyspnoea, exercise symptoms)</td>
<td>Symptom scores in adults<sup>20–22</sup></td>
<td>Sens: 60%, Spec: 66%, PPV: 44–94%, NPV: 66–97%</td>
<td>Combinations of symptoms are clinically more helpful than isolated symptoms, especially in children. For example, two thirds of children with a cluster of cough, wheeze, chest tightness, dyspnoea and exercise symptoms have asthma. Asthma is unlikely if a child does not have at least some of these symptoms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symptom scores in children<sup>20–22</sup></td>
<td>Sens: 45–83%, Spec: 85–97%, PPV: 80%, NPV: 51%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Symptoms of cough and wheeze in pre-school children</td>
<td>Sens: 49%, Spec: 59%, PPV: 80%, NPV: 51%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of atopy</td>
<td>Personal history of atopic/allergic diseases</td>
<td>Personal history of atopy in adults</td>
<td>Sens: 54–55%, Spec: 68–74%, PPV: 46–76%, NPV: 45–79%</td>
<td>Past history (personal or family) of atopic disease has poor sensitivity and specificity for asthma.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Family history of atopy in adults</td>
<td>Sens: 26–60%, Spec: 56–83%, PPV: 44–74%, NPV: 38–70%</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Summary of individual diagnostic tests
Strategies for demonstrating airway obstruction

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description*</th>
<th>Parameter*</th>
<th>Range of predictive values*</th>
<th>Comment**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirometry</td>
<td>Regard a FEV₁/FVC ratio of less than 70% as a positive test for obstructive airway disease.</td>
<td>Obstructive spirometry in adults</td>
<td>23–47% 52% 31–100% 73% 45–100% 75% 18–73% 49%</td>
<td>In the four larger studies (adults and children), the NPV was between 18% and 54% which means that more than half of patients being investigated who have normal spirometry will have asthma (ie false negatives).</td>
</tr>
<tr>
<td>Strategies for demonstrating variability in airway obstruction</td>
<td></td>
<td>Obstructive spirometry in children (5-18 yrs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchodilator reversibility</td>
<td>In adults, regard an improvement in FEV₁ of ≥12% and ≥200 ml as a positive test. In children regard an improvement in FEV₁ of ≥12% as a positive test.</td>
<td>Bronchodilator reversibility in adults</td>
<td>17–69% 50% 55–81% 86% 53–82% 22–68%</td>
<td>In these secondary care populations, about 1 in 3 people with a positive reversibility test will not have asthma (the cohorts all included people with COPD); and at least 1 in 3 people with a negative bronchodilator reversibility test will have asthma.</td>
</tr>
<tr>
<td>Methacholine challenge</td>
<td>Regard a PC₂₀ value of 8 mg/ml or less as a positive test.</td>
<td>Methacholine challenge in adults</td>
<td>51–100% 47–86% 39–100% 36–97% 60–100% 20% 46–100% 94%</td>
<td>Challenge tests are a good indicator for those with a definitive diagnosis of asthma already (based upon clinical judgment, signs and symptoms and response to anti-asthma therapy)</td>
</tr>
<tr>
<td>Fall in FEV₁ ≥15% at cumulative dose of ≤635 mg is positive</td>
<td></td>
<td>Mannitol in adults</td>
<td>56% 63% 75% 81% 80% 49%</td>
<td>These data are from a single study in adults and children with symptoms of asthma on questionnaire.</td>
</tr>
<tr>
<td>Exercise challenge</td>
<td>Exercise challenge in adults</td>
<td>Exercise challenge in children</td>
<td>26–80% 69–72% 100% 69–72% 100% 90–99% 0% 5–73%</td>
<td>The studies in adults had very small sample sizes. The larger study in children had a false positive rate of 1% (PPV 99%).</td>
</tr>
<tr>
<td>Peak flow charting</td>
<td>Monitor peak flows for 2-4 weeks. Calculate mean variability. Regard ≥20% variability as a positive test.</td>
<td>PEF charting in adults in a population study</td>
<td>46% 3–5% 20% 80% 96–99% 97% 60–67% 82% 60–67% 82% 60–67% 82%</td>
<td>It is not clear whether the patients in these studies were symptomatic at the time of the charting, and results may not reflect clinical use in symptomatic populations. One study concluded that the number of days with diurnal variation was more accurate than calculating the mean variation.</td>
</tr>
</tbody>
</table>

(Note that a single value indicates data from a single study)

Parameter:
- FEV₁: Forced Expiratory Volume in 1 second
- FVC: Forced Vital Capacity
- PEF: Peak Expiratory Flow
<table>
<thead>
<tr>
<th>Strategy</th>
<th>Description*</th>
<th>Parameter*</th>
<th>Range of predictive values*</th>
<th>Comments**</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeNO</td>
<td>Adults: Regard a FeNO level of 40 ppb or more as a positive test. Children 5–16yrs: regard a FeNO level of 35 ppb or more as a positive test.</td>
<td>FeNO in adults FeNO in schoolchildren</td>
<td>43–88% 57% 60–92% 87% 54–95% 90% 65–93% 49%</td>
<td>These studies are all in secondary care populations. Approximately 1 in 5 adults with a positive FeNO test will not have asthma (ie false positives) and 1 in 5 adults with a negative FeNO test will have asthma (ie false negatives).</td>
</tr>
<tr>
<td>Blood eosinophils</td>
<td>Suggested thresholds for blood eosinophils: Adults >4.15% Children ≥4%</td>
<td>Blood eosinophils in adults Blood eosinophils in children</td>
<td>15–36% 55–62% 39–100% 67–84% 39–100% 56–69% 27–65% 73%</td>
<td>Elevated blood eosinophil level is poorly predictive. The threshold varies in these studies from 4.0 to 6.3%.</td>
</tr>
<tr>
<td>IgE</td>
<td>Any allergen-specific IgE >0.35 kU/l in adults Total IgE in adults >100 kU/l</td>
<td>54–93% 57% 67–73% 78% 5–14% 5% 95–99% 99%</td>
<td>A normal IgE substantially reduces the probability of asthma in adults with a false negative rate of less than 1 in 10, although a positive result is poorly predictive.</td>
<td></td>
</tr>
<tr>
<td>Skin prick testing</td>
<td>Any positive test (wheal ≥3 mm) in adults Any positive test (wheal ≥3 mm) in children</td>
<td>61–62% 44–79% 63–69% 56–92% 14–81% 65–92% 39–96% 36–79%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
* Data derived from NICE evidence tables unless otherwise specified. Only studies reporting sensitivity, specificity, PPV and NPV are included here.
** Comments have been added by the guideline development group as an aid to interpretation of the data presented.

i Sensitivity (Sens) is the probability of a test being positive when asthma is present.
ii Specificity (Spec) is the probability of a test being negative when asthma is absent.
iii Positive predictive value (PPV) is the proportion of patients with a positive test who actually have asthma (100 minus the PPV is the proportion of patients with a false positive test).
iv Negative predictive value (NPV) is the proportion of patients with a negative test who do not have asthma (100 minus the NPV is the proportion of patients with asthma but in whom test was negative).

Reference tests:
In most of the studies, the reference test was spirometry plus either bronchodilator reversibility or a challenge test, although some studies also included a "typical history of attacks" or diurnal variation, or used physician diagnosis. Studies evaluating methacholine challenge tests used physician diagnosis or bronchodilator reversibility and/or diurnal peak flow variability. In children, the reference tests used were physician diagnosed asthma plus spirometry, or documented history of wheeze on at least two occasions, and variability in FEV₁ over time or on exercise testing.
3.3 PRACTICAL APPROACH TO DIAGNOSIS

The diagnosis of asthma in children and adults is based on the recognition of a characteristic pattern of respiratory symptoms, signs and test results (see Table 2) and the absence of any alternative explanation for these.

At present, there is no definitive evidence to inform the most appropriate choice of algorithm for making a diagnosis of asthma in clinical settings. There are pragmatic observational studies which can inform the clinical process of making a diagnosis, or which compare outcomes of diagnostic tests in different settings, and some potentially useful algorithms, or symptom questionnaires in children have been derived. This section and the associated diagnostic algorithm (see Figure 1), therefore, represent consensus opinion, building on the overarching principles defined in section 3.1, informed by the evidence available from these pragmatic studies combined with data from the diagnostic studies described in section 3.2. There is an urgent need for diagnostic accuracy studies and implementation research to confirm, prospectively, the diagnostic accuracy of retrospectively derived algorithms and to define the optimal approach to making a diagnosis in different clinical practice settings.

All studies evaluating diagnostic approaches have used a clinical assessment, sometimes using diagnostic, or standard morbidity questions, as the basis for the diagnostic process. A number of studies have highlighted the diagnostic significance of episodic symptoms and confirmed wheezing as important predictors of asthma. Studies also illustrate the importance of observing events over time and documenting the basis on which a diagnosis is made.

In adults, absence of smoking and young age of onset are typically included in algorithms designed to distinguish asthma from COPD.

3.3.1 INITIAL STRUCTURED CLINICAL ASSESSMENT

The predictive value of individual symptoms or signs is poor (see Table 1), and a structured clinical assessment including all information available from the history, examination and historical records should be undertaken. The clinical features that influence the probability that episodic respiratory symptoms are due to asthma are summarised in Table 2.

Alternative explanations for the symptoms or signs and/or the possibility of comorbid conditions such as COPD in adults with a smoking history, obesity, and dysfunctional breathing, which can produce features that mimic asthma, must be considered (see Tables 4 and 5). For working adults with airflow obstruction, occupational asthma should be considered and suitable screening questions asked (see section 13.3).
Table 2: Factors to consider in an initial structured clinical assessment

<table>
<thead>
<tr>
<th>Episodic symptoms (see sections 3.2.1 and 3.2.2)</th>
<th>2++ 2+ 2 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than one of the symptoms of wheeze, breathlessness, chest tightness and cough occurring in episodes with periods of no (or minimal) symptoms between episodes. Note that this excludes cough as an isolated symptom in children. For example:</td>
<td></td>
</tr>
<tr>
<td>• a documented history of acute attacks of wheeze, triggered by viral infection or allergen exposure with symptomatic and objective improvement with time and/or treatment</td>
<td></td>
</tr>
<tr>
<td>• recurrent intermittent episodes of symptoms triggered by allergen exposure as well as viral infections and exacerbated by exercise and cold air, and emotion or laughter in children</td>
<td></td>
</tr>
<tr>
<td>• in adults, symptoms triggered by taking non-steroidal anti-inflammatory medication or beta blockers.</td>
<td></td>
</tr>
<tr>
<td>An historical record of significantly lower FEV1 or PEF during symptomatic episodes compared to asymptomatic periods provides objective confirmation of the obstructive nature of the episodic symptoms.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wheeze confirmed by a healthcare professional on auscultation (see section 3.2.1)</th>
<th>2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is important to distinguish wheezing from other respiratory noises, such as stridor or rattly breathing.</td>
<td></td>
</tr>
<tr>
<td>Repeatedly normal examination of chest when symptomatic reduces the probability of asthma.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evidence of diurnal variability</th>
<th>2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms which are worse at night or in the early morning.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atopic history (see section 3.2.4)</th>
<th>2++ 2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal history of an atopic disorder (i.e., eczema or allergic rhinitis) or a family history of asthma and/or atopic disorders, potentially corroborated by a previous record of raised allergen-specific IgE levels, positive skin prick tests to aeroallergens or blood eosinophilia.</td>
<td></td>
</tr>
</tbody>
</table>

| **Absence of symptoms, signs or clinical history to suggest alternative diagnoses** *(including but not limited to COPD, dysfunctional breathing, obesity)* *(see section 3.3.3)*| |
|---| |
D Undertake a structured clinical assessment to assess the initial probability of asthma. This should be based on:

- a history of recurrent episodes (attacks) of symptoms, ideally corroborated by variable peak flows when symptomatic and asymptomatic
- symptoms of wheeze, cough, breathlessness and chest tightness that vary over time
- recorded observation of wheeze heard by a healthcare professional
- personal/family history of other atopic conditions (in particular, atopic eczema/dermatitis, allergic rhinitis)
- no symptoms/signs to suggest alternative diagnoses.

3.3.2 HIGH PROBABILITY OF ASTHMA BASED ON INITIAL STRUCTURED CLINICAL ASSESSMENT

Adults and children with a typical clinical assessment including recurrent episodes of symptoms (‘attacks’), wheeze heard by a healthcare professional, historical record of variable airflow obstruction and a positive history of atopy (see Table 2) and without any features to suggest an alternative diagnosis (see Tables 4 and 5) have a high probability of asthma. If there is doubt, the diagnosis should be considered as being of intermediate probability and further investigations will be needed (see section 3.3.4).

Obstructive spirometry and a positive bronchodilator test provide objective evidence of variable airflow obstruction, and further increase the probability of asthma. However, as spirometry has a false negative rate of at least 50%, normal spirometry does not rule out asthma. If the patient is symptomatic, peak flow charting if performed correctly may provide objective evidence of variability.

✔ In patients with a high probability of asthma:

- record the patient as likely to have asthma and commence a carefully monitored initiation of treatment (typically six weeks of inhaled corticosteroids) (see Table 3)
- assess the patient’s status with a validated symptom questionnaire, ideally corroborated by lung function tests (FEV₁ at clinic visits or by domiciliary serial peak flows)
- with a good symptomatic and objective response to treatment, confirm the diagnosis of asthma and record the basis on which the diagnosis was made
- if the response is poor or equivocal, check inhaler technique and adherence, arrange further tests and consider alternative diagnoses.

3.3.3 LOW PROBABILITY OF ASTHMA BASED ON INITIAL STRUCTURED CLINICAL ASSESSMENT

Adults and children who do not have any of the typical features on initial structured clinical assessment (see Table 2) or who have symptoms suggestive of an alternative diagnosis (see Tables 4 and 5) have a low probability of asthma.

✔ If there is a low probability of asthma and/or an alternative diagnosis is more likely, investigate for the alternative diagnosis and/or undertake or refer for further tests of asthma.
Table 3: A monitored initiation of treatment in patients with suspected asthma

<table>
<thead>
<tr>
<th>In patients with suspected asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Record the patient as having ‘suspected asthma’.</td>
</tr>
<tr>
<td>2. Proceed to a carefully monitored initiation of treatment. The initial choice of treatment will be based on an assessment of the degree of asthma severity. Typically this will be six weeks of inhaled steroids through a device the patient can use (see sections 7.2, 8.1, 8.4) but in more acute clinical circumstances a course of oral steroids may be appropriate (see section 9.3.3).</td>
</tr>
<tr>
<td>3. Assess the baseline status using a validated questionnaire (e.g. Asthma Control Questionnaire or Asthma Control Test) (see Table 7) and/or lung function tests (spirometry or peak expiratory flow) (see section 3.2.2).</td>
</tr>
<tr>
<td>4. Arrange a follow-up appointment in 6–8 weeks in order to assess response to treatment.</td>
</tr>
<tr>
<td>5. At the follow-up appointment, symptomatic response may be assessed with a validated questionnaire (see Table 7). Lung function may be monitored with FEV₁ at clinic visits or domiciliary serial peak flows.</td>
</tr>
</tbody>
</table>

If the objective response is good (i.e. a clinically important improvement in symptoms and/or substantial increase in lung function)

| 6. Confirm the diagnosis of asthma and record the basis on which the diagnosis was made. |
| 7. Adjust the treatment according to the response (for example, titrating down the dose of inhaled steroid) to the lowest dose that maintains the patient free of symptoms. Careful observation during a trial of withdrawing treatment will also identify patients whose improvement was due to spontaneous remission (this is particularly important in children). |
| 8. Provide self-management education and a personalised asthma action plan (see section 5.2.2) before arranging repeat prescribing so that the patient is aware of the action to take if their control deteriorates. |

If the objective response is poor or equivocal

| 9. Discuss adherence and recheck inhaler technique as possible causes of treatment failure. |
| 10. Arrange further tests or consider alternative diagnoses (see section 3.3.3). It will usually be appropriate to withdraw the treatment. |
Table 4: Clinical clues to alternative diagnoses in wheezy children

<table>
<thead>
<tr>
<th>Clinical clue</th>
<th>Possible diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perinatal and family history</td>
<td></td>
</tr>
<tr>
<td>Symptoms present from birth or perinatal lung problem</td>
<td>Cystic fibrosis; chronic lung disease of prematurity; ciliary dyskinesia; developmental lung anomaly</td>
</tr>
<tr>
<td>Family history of unusual chest disease</td>
<td>Cystic fibrosis; neuromuscular disorder</td>
</tr>
<tr>
<td>Severe upper respiratory tract disease</td>
<td>Defect of host defence; ciliary dyskinesia</td>
</tr>
<tr>
<td>Symptoms and signs</td>
<td></td>
</tr>
<tr>
<td>Persistent moist cough9</td>
<td>Cystic fibrosis; bronchiectasis; protracted bacterial bronchitis; recurrent aspiration; host defence disorder; ciliary dyskinesia</td>
</tr>
<tr>
<td>Excessive vomiting</td>
<td>Gastro-oesophageal reflux (with or without aspiration)</td>
</tr>
<tr>
<td>Paroxysmal coughing bouts leading to vomiting</td>
<td>Pertussis</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>Swallowing problems (with or without aspiration)</td>
</tr>
<tr>
<td>Breathlessness with light headedness and peripheral tingling</td>
<td>Dysfunctional breathing, panic attacks</td>
</tr>
<tr>
<td>Inspiratory stridor</td>
<td>Tracheal or laryngeal disorder</td>
</tr>
<tr>
<td>Abnormal voice or cry</td>
<td>Laryngeal problem</td>
</tr>
<tr>
<td>Focal signs in chest</td>
<td>Developmental anomaly; post-infective syndrome; bronchiectasis; tuberculosis</td>
</tr>
<tr>
<td>Finger clubbing</td>
<td>Cystic fibrosis; bronchiectasis</td>
</tr>
<tr>
<td>Failure to thrive</td>
<td>Cystic fibrosis; host defence disorder; gastro-oesophageal reflux</td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
</tr>
<tr>
<td>Focal or persistent radiological changes</td>
<td>Developmental lung anomaly; cystic fibrosis; post-infective disorder; recurrent aspiration; inhaled foreign body; bronchiectasis; tuberculosis</td>
</tr>
</tbody>
</table>
Table 5: Clinical clues to alternative diagnoses in adults

<table>
<thead>
<tr>
<th>Clinical clue</th>
<th>Possible diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without airflow obstruction</td>
<td></td>
</tr>
<tr>
<td>Predominant cough without lung function abnormalities</td>
<td>Chronic cough syndromes; pertussis</td>
</tr>
<tr>
<td>Prominent dizziness, light-headedness, peripheral tingling</td>
<td>Dysfunctional breathing</td>
</tr>
<tr>
<td>Recurrent severe ‘asthma attacks’ without objective confirmatory evidence</td>
<td>Vocal cord dysfunction</td>
</tr>
<tr>
<td>Predominant nasal symptoms without lung function abnormalities</td>
<td>Rhinitis</td>
</tr>
<tr>
<td>Postural and food-related symptoms, predominant cough</td>
<td>Gastro-oesophageal reflux</td>
</tr>
<tr>
<td>Orthopnoea, paroxysmal nocturnal dyspnoea, peripheral oedema, pre-existing cardiac disease</td>
<td>Cardiac failure</td>
</tr>
<tr>
<td>Crackles on auscultation</td>
<td>Pulmonary fibrosis</td>
</tr>
<tr>
<td>With airflow obstruction</td>
<td></td>
</tr>
<tr>
<td>Significant smoking history (ie, >30 pack-years), age of onset >35 years</td>
<td>COPD</td>
</tr>
<tr>
<td>Chronic productive cough in the absence of wheeze or breathlessness</td>
<td>Bronchiectasis*; inhaled foreign body*; obliterative bronchiitis; large airway stenosis</td>
</tr>
<tr>
<td>New onset in smoker, systemic symptoms, weight loss, haemoptysis</td>
<td>Lung cancer*; sarcoidosis*</td>
</tr>
</tbody>
</table>

* may also be associated with non-obstructive spirometry

3.3.4 INTERMEDIATE PROBABILITY OF ASTHMA BASED ON INITIAL STRUCTURED CLINICAL ASSESSMENT

Adults and children who have some, but not all, of the typical features of asthma on an initial structured clinical assessment (see Table 2) or who do not respond well to a monitored initiation of treatment (see Table 3) have an intermediate probability of asthma. They require clinical assessment and investigation before a diagnosis can be made and, unless the clinical condition is acute, before treatment is commenced or continued. Particular care may be needed in conditions known to overlap with or mimic asthma, for example COPD (which may need to be distinguished from fixed airflow obstruction as a result of airway remodelling in chronic asthma), obesity, anxiety/panic, or dysfunctional breathing.

Spirometry enables differentiation of obstructive and non-obstructive lung function, which determines the differential diagnosis (see Tables 4 and 5) and approach to investigation. Spirometry is useful for confirming the diagnosis of asthma but is not sufficiently specific to rule it out.

 Spirometry, with bronchodilator reversibility as appropriate, is the preferred initial test for investigating intermediate probability of asthma in adults, and in children old enough to undertake a reliable test.
Adults and children with airways obstruction

Asthma is the by far the commonest cause of airways obstruction identified through spirometry in children. Obstruction due to other disorders is much more common in adults than in children. Patients may have more than one cause of airflow obstruction, which complicates the interpretation of any test. In particular, asthma and COPD commonly coexist in adults.

A bronchodilator reversibility test and/or a monitored initiation of treatment (typically six weeks of inhaled corticosteroids (ICS) can establish whether or not the airflow obstruction reverses to normal with treatment. Evidence of a symptomatic response, ideally using objective measures of asthma control and lung function, should be sought at a follow-up visit. If there is significant reversibility or improvement in symptom scores, confirm the diagnosis of asthma and record the basis on which the diagnosis was made. Continue to treat as asthma, but aim to find the minimum effective dose of therapy.

If the patient remains asymptomatic consider a trial of reduction or withdrawal of treatment. This is particularly important in children in whom natural resolution of symptoms is more common than in adults.

In adults and children with an intermediate probability of asthma and airways obstruction identified through spirometry, undertake reversibility tests and/or a monitored initiation of treatment assessing the response to treatment by repeating lung function tests and objective measures of asthma control.

Adults and children without airways obstruction

In patients with normal spirometry results consider arranging challenge tests with methacholine, exercise or mannitol in order to test for airway hyper-responsiveness. Alternatively, a positive FeNO test indicates the presence of eosinophilic inflammation and increases the probability of asthma.

Investigation of atopic status, serum specific-IgE and allergen skin-prick tests may be of value in selected patients; a normal result reduces the probability of asthma. Consider performing additional investigations such as full lung function tests and a chest X-ray in any patient presenting with atypical or additional symptoms or signs. A study in primary care in children age 0–6 years concluded that a chest X-ray, in the absence of a clinical indication, need not be part of the initial diagnostic work up but may be reserved for children with severe disease or clinical clues suggesting other conditions.

In adults and children with an intermediate probability of asthma and normal spirometry results, undertake challenge tests and/or measurement of FeNO to identify eosinophilic inflammation.

Children unable to undertake spirometry

In some children, and particularly pre-school children, there is insufficient evidence at the first consultation to make a firm diagnosis of asthma, but no features to suggest an alternative diagnosis. There are several possible approaches to reaching a diagnosis in this group. Which approach is taken will be influenced by the frequency and severity of the symptoms.
These approaches include:

Watchful waiting with review. In children with mild intermittent wheeze and other respiratory symptoms that occur only with viral upper respiratory infections, it is often reasonable to give no maintenance treatment and to plan a review of the child after an interval agreed with the parents/carers.

Monitored initiation of treatment (see Table 3). Most children under five years of age and some older children cannot perform spirometry. In these children, offer a monitored initiation of treatment for a specific period. The choice of treatment (for example inhaled corticosteroids) depends on the severity and frequency of symptoms.

Monitor treatment for 6–8 weeks and if there is clear evidence of clinical improvement, the treatment should be continued and they should be regarded as having asthma (it may be appropriate to consider a trial of withdrawal of treatment at a later stage). If the treatment trial is not beneficial, then consider tests for alternative conditions and referral for specialist assessment.

☑ In children with an intermediate probability of asthma who cannot perform spirometry:

• consider watchful waiting if the child is asymptomatic
• offer a carefully monitored initiation of treatment if the child is symptomatic.
Figure 1: Diagnostic algorithm

Presentation with respiratory symptoms: wheeze, cough, breathlessness, chest tightness

Structured clinical assessment (from history and examination of previous medical records)

- recurrent episodes of symptoms
- symptom variability
- absence of symptoms of alternative diagnosis

Look for:
- recorded observation of wheeze
- personal history of atopy
- historical record of variable PEF or FEV₁

High probability of asthma

- Code as: suspected asthma
- Initiation of treatment
- Assess response objectively (lung function/validated symptom score)
- Good response

Asthma

- Adjust maintenance dose. Provide self-management advice. Arrange on-going review
- Good response

Low probability of asthma

- Poor response

Intermediate probability of asthma

- Test for airway obstruction: spirometry + bronchodilator reversibility

Options for investigations are:

- Test for variability:
 - reversibility
 - PEF charting
 - challenge tests

- Test for eosinophilic inflammation or atopy:
 - FeNO
 - blood eosinophils,
 - skin-prick test, IgE

- Suspected asthma:
 - Watchful waiting (if asymptomatic) or
 - Commence treatment and assess response objectively

- Poor response

- Other diagnosis unlikely

- Investigate/treat for other more likely diagnosis

- Other diagnosis confirmed

1 In children under 5 years and others unable to undertake spirometry in whom there is a high or intermediate probability of asthma, the options are monitored initiation of treatment or watchful waiting according to the assessed probability of asthma.
3.3.5 DIAGNOSTIC INDICATIONS FOR REFERRAL

At any point in the diagnostic algorithm, there may be a need for referral for additional investigations and/or specialist advice. Some key indications for referral to specialist care are listed in Table 6.

Table 6: Diagnostic indications for specialist referral

<table>
<thead>
<tr>
<th>Adults</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referral for tests not available in primary care</td>
<td></td>
</tr>
<tr>
<td>Diagnosis unclear</td>
<td>Diagnosis unclear</td>
</tr>
<tr>
<td>Suspected occupational asthma (symptoms that improve when patient is not at work, adult-onset asthma and workers in high-risk occupations)</td>
<td></td>
</tr>
<tr>
<td>Poor response to asthma treatment</td>
<td>Poor response to monitored initiation of asthma treatment</td>
</tr>
<tr>
<td>Severe/life-threatening asthma attack</td>
<td>Severe/life-threatening asthma attack</td>
</tr>
<tr>
<td>‘Red flags’ and indicators of other diagnoses</td>
<td></td>
</tr>
<tr>
<td>Prominent systemic features (myalgia, fever, weight loss)</td>
<td>Failure to thrive</td>
</tr>
<tr>
<td>Unexpected clinical findings (eg crackles, clubbing, cyanosis, cardiac disease, monophonic wheeze or stridor)</td>
<td>Unexplained clinical findings (eg focal signs, abnormal voice or cry, dysphagia, inspiratory stridor)</td>
</tr>
<tr>
<td>Persistent non-variable breathlessness</td>
<td>Symptoms present from birth or perinatal lung problem</td>
</tr>
<tr>
<td>Chronic sputum production</td>
<td>Excessive vomiting or posseting</td>
</tr>
<tr>
<td>Unexplained restrictive spirometry</td>
<td>Severe upper respiratory tract infection</td>
</tr>
<tr>
<td>Chest X-ray shadowing</td>
<td>Persistent wet or productive cough</td>
</tr>
<tr>
<td>Marked blood eosinophilia</td>
<td>Family history of unusual chest disease</td>
</tr>
<tr>
<td>Nasal polyps</td>
<td></td>
</tr>
<tr>
<td>Patient or parental anxiety or need for reassurance</td>
<td></td>
</tr>
</tbody>
</table>

3.4 ORGANISATION OF DIAGNOSTIC SERVICES

A structured clinical assessment and some diagnostic tests (for example spirometry with bronchodilator reversibility) are readily available in primary care, although specialist expertise may be needed in young children. Other tests, such as FeNO and skin-prick testing, are only available in some secondary care settings and a few primary care practices. Some tests (for example challenge tests) will require referral to a diagnostic centre.

In the future, this may require additional provision of specialist-led diagnostic services to support general practitioner (GP) assessment. For example a regional asthma-COPD diagnostic service in the Netherlands available to support GPs’ assessment reported that the service agreed with the GPs’ working diagnosis of asthma in 62% of cases, and was able to provide a diagnosis for 95% of the patients in whom GPs were uncertain.16,72
C Streamlined referral pathways should be developed for tests not available or appropriate in primary care.

3.5 WHEEZING IN PRE-SCHOOL CHILDREN AND THE FUTURE RISK OF DEVELOPING PERSISTENT ASTHMA

Several factors are associated with a high (or low) risk of developing persisting wheezing or asthma through childhood. The presence of these factors increases the probability that a child with respiratory symptoms will have asthma.

These factors include:

Age at presentation

The natural history of wheeze is dependent on age at first presentation. In general, the earlier the onset of wheeze, the better the prognosis. Cohort studies show a break point at around two years; most children who present before this age become asymptomatic by mid-childhood. Coexistent atopy is a risk factor for persistence of wheeze independent of age of presentation.

Sex

Male sex is a risk factor for asthma in pre-pubertal children. Female sex is a risk factor for the persistence of asthma in the transition from childhood to adulthood. Boys with asthma are more likely to grow out of their asthma during adolescence than girls.

Severity and frequency of previous wheezing episodes

Frequent or severe episodes of wheezing in childhood are associated with recurrent wheeze that persists into adolescence.

Coexistence of atopic disease

A history of other atopic conditions such as eczema and rhinitis increases the probability of asthma. Positive tests for atopy in a wheezing child also increase the likelihood of asthma. A raised specific IgE to wheat, egg white, or inhalant allergens such as house dust mite and cat dander, predicts later childhood asthma. Other markers of allergic disease at presentation, such as positive skin-prick tests and a raised blood eosinophil count, are related to the severity of current asthma and persistence through childhood.

Family history of atopy

A family history of atopy is the most clearly defined risk factor for atopy and asthma in children. The strongest association is with maternal atopy, which is an important risk factor for the childhood onset of asthma and for recurrent wheezing that persists throughout childhood.

Abnormal lung function

Persistent reductions in baseline airway function and increased airway responsiveness during childhood are associated with having asthma in adult life.
4 Monitoring asthma

4.1 MONITORING ASTHMA IN CHILDREN

4.1.1 BIOMARKERS

Studies in children have shown that routine serial measurements of peak expiratory flow, airflow hyper-responsiveness, or FeNO do not provide additional benefit when added to a symptom-based management strategy as normal lung function does not always indicate well controlled asthma. One clinical trial, however, reported that a 90-day average seasonal 5% reduction in peak flow was associated with a 22% increase in risk of asthma attack \(p=0.01 \). In a further study of children with asthma who were not taking ICS, compared with children with an FEV₁ ≥100%, children with FEV₁ 80% to 99%, 60% to 79%, and <60% were 1.3, 1.8, and 4.8, respectively, more likely to have a serious asthma attack in the following four months.

A small prospective observational study in 40 children suggested that serial measurements of FeNO and/or sputum eosinophilia may guide step down of ICS. Another small study of 40 children showed that a rising FeNO predicted relapse after cessation of ICS. The number of children involved in these step down and cessation studies is small and the results should be interpreted with some caution until replicated in larger datasets.

A better understanding of the natural variability of biomarkers independent of asthma is required and studies are needed to establish whether subgroups of patients can be identified in which biomarker-guided management is effective. Table 7 summarises the methodology, measurement characteristics and interpretation of some of the validated tools used to assess symptoms and other aspects of asthma.

4.1.2 CLINICAL ISSUES

When assessing asthma control a general question, such as “how is your asthma today?”, is likely to yield a non-specific answer; “I am ok”. Using closed questions, such as “do you use your reliever (blue inhaler) every day?”, is likely to yield more useful information. As in any chronic disease of childhood, it is good practice to monitor growth at least annually in children diagnosed with asthma.

- When assessing asthma control use closed questions.
- Growth (height and weight centile) should be monitored at least annually in children with asthma.
- Healthcare professionals should be aware that the best predictor of future asthma attacks is current control.
4.2 MONITORING ASTHMA IN ADULTS

In the majority of patients with asthma symptom-based monitoring is adequate. Patients achieving control of symptoms with treatment have a low risk of asthma attacks. Patients with poor lung function and with a history of asthma attacks in the previous year may be at greater risk of future asthma attacks for a given level of symptoms.

- Closer monitoring of individuals with poor lung function and with a history of asthma attacks in the previous year should be considered.

A management strategy that controls eosinophilic airway inflammation or airway hyper-responsiveness can result in better control of asthma attacks than one which controls immediate clinical manifestations; the benefits of inflammation-guided management are greater in patients with severe asthma, when asthma attacks can occur frequently and unpredictably. More research is needed to assess the relative roles of the different measures and to address the feasibility and cost of incorporating them into monitoring protocols before they can be recommended more widely.

Table 7 summarises the methodology, measurement characteristics and interpretation of some of the validated tools used to assess symptoms and other aspects of asthma. Some measures provide information about future risk and potential corticosteroid responsiveness, such as sputum eosinophil count, airway responsiveness and FeNO, rather than immediate clinical control. Risk reduction, for example minimising future adverse outcomes such as asthma attacks, is an important goal of asthma management. Some patients have an accelerated decline in lung function in terms of FEV1; risk factors and treatment strategies for these patients are poorly defined. Further research in this area is an important priority.

- When assessing asthma control in adults use specific questions, such as “how many days a week do you use your reliever (blue) inhaler?”.

4.3 MONITORING CHILDREN IN PRIMARY CARE

Asthma is best monitored in primary care by routine clinical review on at least an annual basis (see section 14.3).

- The factors that should be monitored and recorded include:
 - symptom score, eg Children’s Asthma Control Test, Asthma Control Questionnaire
 - asthma attacks, oral corticosteroid use and time off school/nursery due to asthma since last assessment
 - inhaler technique
 - adherence, which can be assessed by reviewing prescription refill frequency
 - possession of and use of a self-management plan/written personalised asthma action plan
 - exposure to tobacco smoke
 - growth (height and weight centile).
4.4 MONITORING ADULTS IN PRIMARY CARE

Asthma is best monitored in primary care by routine clinical review on at least an annual basis (see section 14.3). The factors that should be monitored and recorded include: symptomatic asthma control; lung function; asthma attacks, oral corticosteroid use and time off work or school since last assessment; inhaler technique (see section 8); adherence (see section 5.4); bronchodilator overuse, especially more than 12 short-acting β₂ agonist (SABA) inhalers per year (see sections 7.1.1 and 9.1.2); and possession of and use of a self-management plan/written personalised asthma action plan (see section 5.3.2).

Symptomatic asthma control is best assessed using directive questions such as the Royal College of Physicians’ ‘3 questions,’129 or the Asthma Control Questionnaire or Asthma Control Test (see Table 7), since broad non-specific questions may underestimate symptoms. Reduced lung function compared to previously recorded values may indicate current bronchoconstriction or a long-term decline in lung function and should prompt detailed assessment. Patients with irreversible airflow obstruction may have an increased risk of asthma attacks. Adherence to treatment and bronchodilator reliance can both be assessed by reviewing prescription refill frequency.

In adults the following factors should be monitored and recorded in primary care:

- symptomatic asthma control
- lung function assessed by spirometry or by PEF
- asthma attacks, oral corticosteroid use and time off work since last assessment
- inhaler technique
- adherence
- bronchodilator reliance
- possession of and use of a self-management plan/personal action plan.
Table 7: Summary of tools that can be used to assess asthma

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Methodology</th>
<th>Measurement characteristics</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirometry[^{130,131}]</td>
<td>Widely available. Enables clear demonstration of airflow obstruction. FEV(_1), largely independent of effort and highly repeatable. Less applicable in acute severe asthma. Only assesses one aspect of the disease state. Can be achieved in children as young as five years.</td>
<td>Normal ranges widely available and robust. In the short term (20 minutes) 95% range for repeat measures of FEV(_1), (<160) ml; FVC, (<330) ml, independent of baseline value.</td>
<td>Good for short- and longer-term reversibility testing in adults with pre-existing airflow obstruction. (>400) ml increase in FEV(_1), post-bronchodilator highly suggestive of asthma in adults. Values usually within normal range in adults and children with asthma.</td>
</tr>
<tr>
<td>Peak expiratory flow (PEF)[^{99,46,50,113-115,132}]</td>
<td>Widely available and simple. Applicable in a wide variety of circumstances including acute severe asthma. PEF variability can be determined from home readings in most patients. PEF is effort dependent and not as repeatable as FEV(_1).</td>
<td>Normal ranges of PEF are wide, and currently available normative tables are outdated and do not encompass ethnic diversity. Change in PEF more meaningful than absolute value. (>60) l/min increase in PEF suggested as best criteria for defining reversibility. Normal range of PEF variability defined as amplitude % highest varies between (<8)% or (<20)%). It is likely to depend on number of readings and degree of patient coaching.</td>
<td>Useful for short- and longer-term reversibility testing in adults with pre-existing airflow obstruction. PEF monitoring not proven to improve asthma control in addition to symptom score in adults and children. There may be some benefit in adult patients with more severe disease and in those with poor perception of bronchoconstriction.</td>
</tr>
<tr>
<td>Measurement</td>
<td>Methodology</td>
<td>Measurement characteristics</td>
<td>Comments</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Royal College of Physicians 3 Questions(^\text{129})</td>
<td>Yes/no or graded response to the following three questions:</td>
<td>No to all questions consistent with controlled asthma.</td>
<td>Not well validated in adults. Not validated in children. Simplicity is attractive for use in day-to-day clinical practice.</td>
</tr>
<tr>
<td></td>
<td>In the last week (or month)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Have you had difficulty sleeping because of your asthma symptoms (including cough)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Have you had your usual asthma symptoms during the day (cough, wheeze, chest tightness or breathlessness)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Has your asthma interfered with your usual activities (eg housework, work/school etc)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma Control Questionnaire (ACQ)(^\text{133-136})</td>
<td>Response to 7 questions, 5 relating to symptoms, 1 rescue treatment use and 1 FEV(_1). Response usually assessed over the preceding week. Shortened, five question symptom only questionnaire is as valid.</td>
<td>Well controlled ≤0.75, inadequately controlled ≥1.5. 95% range for repeat measure ± 0.36. Minimal important difference 0.5.</td>
<td>Well validated in adults and children older than 5 years. A composite scoring system with a strong bias to symptoms. Could be used to assess response to longer term treatment trials. Shortened five-point questionnaire is probably best for those with normal or near-normal FEV(_1).</td>
</tr>
<tr>
<td>Measurement</td>
<td>Methodology</td>
<td>Measurement characteristics</td>
<td>Comments</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Asthma Control Test 137,138</td>
<td>Response to 5 questions, 3 related to symptoms, 1 medication use and 1 overall control. Five-point response score.</td>
<td>Reasonably well controlled 20–24; under control =25. Within subject intraclass correlation coefficient 0.77. 95% range for repeat measure and minimally clinically important difference need to be defined.</td>
<td>Validated in adults and children aged 4 years and older (the childhood asthma control test is valid for 4–11 year olds). Could be used to assess response to longer-term treatment trials, particularly in those with normal or near normal spirometric values. 95% range for repeat measure and minimally clinically important difference not defined.</td>
</tr>
<tr>
<td>Mini Asthma Quality of Life Questionnaire 134,139,140</td>
<td>Response to 15 questions in 4 domains (symptoms, activity limitations, emotional function and environmental stimuli). Response usually assessed over the preceding 2 weeks. Closely related to larger 32-item asthma quality of life questionnaire. The Paediatric Asthma Quality of Life Questionnaire has 23 questions each with seven possible responses.</td>
<td>95% range for repeat measure ±0.36. Minimal important difference 0.5. Scores usually reported as the mean of responses across the four domains with values lying between 1 and 7; higher scores indicate better quality of life.</td>
<td>Well validated quality of life questionnaire. Could be used to assess response to longer-term treatment trials. The Asthma Quality of Life Questionnaire is validated in adults and the Paediatric Asthma Quality of Life Questionnaire has been validated for the age range 7–17 years.</td>
</tr>
<tr>
<td>Measurement</td>
<td>Methodology</td>
<td>Measurement characteristics</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Airway responsiveness</td>
<td>Only available in selected secondary care facilities. Responsive to change (particularly indirect challenges such as inhaled mannitol). Less of a ceiling effect than FEV₁ and PEF. Not applicable in patients with impaired lung function (ie FEV₁/FVC <0.7 and FEV₁ <70% predicted).</td>
<td>Normal methacholine PC₂₀ >8 mg/ml. 95% range for repeat measure ±1.5–2 doubling doses.</td>
<td>Has not been widely used to monitor disease and assess treatment responses. Regular monitoring not proven to improve asthma control in children.</td>
</tr>
<tr>
<td>Exhaled nitric oxide (FeNO)</td>
<td>Increasingly available in secondary care. Monitors still relatively expensive although expect the technology to become cheaper and more widespread. Measurements can be obtained in almost all adults and most children over 5 years. Results are available immediately. Reasonably close relationship between FeNO and eosinophilic airway inflammation, which is independent of gender, age, atopy and ICS use. Relationship is lost in smokers. Not closely related to other measures of asthma morbidity.</td>
<td>Normal range <25 ppb at exhaled flow of 50 ml/sec. 95% range for repeat measure 4 ppb. >50 ppb highly predictive of eosinophilic airway inflammation and a positive response to corticosteroid therapy. <25 ppb highly predictive of its absence of and a poor response to corticosteroids or successful step down in corticosteroid therapy.</td>
<td>Raised FeNO (>50 ppb in adults and >35 ppb in children) is predictive of a positive response to corticosteroids. The evidence that FeNO can be used to guide corticosteroid treatment is mixed. Protocols for diagnosis and monitoring have not been well defined and more work is needed. Low FeNO (<25 ppb in adults; <20 ppb in the under 12 year old range) may have a role in identifying patients who can step down corticosteroid treatment safely.</td>
</tr>
<tr>
<td>Measurement</td>
<td>Methodology</td>
<td>Measurement characteristics</td>
<td>Comments</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Eosinophil differential count in induced sputum</td>
<td>Only available in specialist centres although technology is widely available and inexpensive. Information available in 80–90% of patients although immediate results are not available. Sputum eosinophil count not closely related to other measures of asthma morbidity.</td>
<td>Normal range <2%; 95% range for repeat measure ±2–3 fold.</td>
<td>Close relationship between raised sputum eosinophil count and corticosteroid responsiveness in adults. Use of sputum eosinophil count to guide corticosteroid therapy has been shown to reduce asthma attacks in adult patients with severe disease. In children, one study found benefit in using sputum eosinophils to guide reductions of ICS treatment in conjunction with FeNO.</td>
</tr>
</tbody>
</table>

Research is needed to develop asthma attack risk stratification tables on the basis of these data. These might facilitate communication between patients and healthcare professionals resulting in better outcomes, as has been shown in coronary artery disease.
5 Supported self management

Self management has been defined as the tasks that individuals must undertake to live with chronic conditions including, “having the confidence to deal with medical management, role management and emotional management of their conditions”.

In the context of asthma, self management has focused on the medical aspects of living with a variable condition and emphasised the importance of recognising and acting on symptoms and signs of deterioration. Personalised asthma action plans (PAAPs), however, need to be seen in the context of the broader challenges of living with asthma.

5.1 EFFECTIVENESS OF SUPPORTED SELF MANAGEMENT

There is a substantial body of evidence to show that self-management education incorporating written PAAPs improves health outcomes for people with asthma. Twenty-two systematic reviews of 261 randomised controlled trials (RCTs) encompass evidence from a broad range of demographic, clinical and healthcare contexts. In addition, 35 RCTs provide further evidence about self management in pre-school children, ethnic minorities, and primary care-based populations.

Self-management education delivered to adults or children with asthma (and/or their parents/carers):

- reduces emergency use of healthcare resources, including emergency department (ED) visits, hospital admissions and unscheduled consultations
- improves markers of asthma control, including reduced symptoms and days off work, and improves quality of life

Patients with all severities of asthma were included in these systematic reviews, although some focused specifically on people who had attended EDs, or with severe or difficult asthma. Most self-management education was delivered in healthcare settings, but some specifically evaluated school, home, or community-based interventions. Typically, education was delivered by healthcare professionals either in individual consultations or group settings, but some systematic reviews included technology-based interventions, or were part of community-health interventions for deprived and/or ethnic minority groups.
5.2 COMPONENTS OF A SELF-MANAGEMENT PROGRAMME

Successful programmes varied considerably, but core components included structured education, reinforced with written PAAPs, although the duration, intensity and format for delivery varied.

5.2.1 PATIENT EDUCATION

Education is a core component of effective self-management programmes in adults and children. There is evidence that educational interventions that were supported by a written PAAP and regular professional review were more effective than less intensive regimes.

Information technology (IT)-based education has been shown to have potential, but as yet there is no consistent evidence on which to base recommendations on format, target audiences or the context in which it should be delivered.

5.2.2 PERSONALISED ASTHMA ACTION PLANS

Written PAAPs (for example, those for adults and children from Asthma UK, available at www.asthma.org.uk/resources/#action plans) are crucial components of effective self-management education. One systematic review identified the features of PAAPs associated with beneficial outcomes (see Table 8). These include:

- specific advice about recognising loss of asthma control, assessed by symptoms or peak flows or both. In children, symptom-based written plans are effective in reducing emergency consultations for asthma, although (in older children) peak flow-based plans may be as effective for other outcomes.
- actions, summarised as two or three action points, to take if asthma deteriorates, including seeking emergency help, starting oral steroids (which may include provision of an emergency course of steroid tablets), restarting or temporarily increasing (as opposed to just doubling) ICS, as appropriate to clinical severity (see Table 8 for further advice).

All people with asthma (and/or their parents or carers) should be offered self-management education which should include a written personalised asthma action plan and be supported by regular professional review.

In adults, written personalised asthma action plans may be based on symptoms and/or peak flows: symptom-based plans are generally preferable for children.
Every asthma consultation is an opportunity to review, reinforce and extend both the patient's knowledge and skills. This is true whether the patient is seen in primary care, the ED or the outpatient clinic. It is important to recognise that education is a process and not a single event.

- A hospital admission represents a window of opportunity to review self-management skills. No patient should leave hospital without a written personalised asthma action plan.
- An acute consultation offers the opportunity to determine what action the patient has already taken to deal with the asthma attack. Their self-management strategy may be reinforced or refined and the need for consolidation at a routine follow up considered.
- A consultation for an upper respiratory tract infection or other known trigger is an opportunity to rehearse with the patient their self management in the event of their asthma deteriorating.
- Education should include personalised discussion of issues such as trigger avoidance and achieving a smoke-free environment to support people and their families living with asthma.
- Brief simple education linked to patient goals is most likely to be acceptable to patients.

The role of telehealthcare interventions in supporting self management is covered in section 14.4.
Table 8. Summary of the key components of a written personalised asthma action plan (adapted from Gibson et al)\(^{10}\)

<table>
<thead>
<tr>
<th>Component of an action plan</th>
<th>Result</th>
<th>Practical considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format of action points:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptom v peak flow triggered</td>
<td>Similar effect</td>
<td>Asthma UK personalised asthma action plans include both symptom triggers and peak flow levels at which action should be taken.</td>
</tr>
<tr>
<td>Standard written instructions</td>
<td>Consistently beneficial</td>
<td>Not clearly better than standard instructions</td>
</tr>
<tr>
<td>Traffic light configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of action points:</td>
<td></td>
<td>Commonly used action points have been:</td>
</tr>
<tr>
<td>2–3 action points</td>
<td>Consistently beneficial</td>
<td>PEF <80% best: increase inhaled corticosteroids</td>
</tr>
<tr>
<td>4 action points</td>
<td>Not clearly better than 2–3 points</td>
<td>PEF <60% best: commence oral steroids and seek medical advice</td>
</tr>
<tr>
<td>Peak expiratory flow (PEF) levels:</td>
<td>Consistently beneficial</td>
<td>PEF <40% best: seek urgent medical advice</td>
</tr>
<tr>
<td>Based on percentage personal best PEF</td>
<td>Not consistently better than usual care</td>
<td>Personal best should be assessed once treatment has been optimised and peak flows are stable. Best peak flow should be updated every few years in adults, and, if a peak flow is being used, more frequently in growing children.</td>
</tr>
<tr>
<td>Based on percentage predicted PEF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment instructions:</td>
<td>Consistently beneficial</td>
<td>Patients may safely hold an emergency supply of prednisolone tablets for use if their symptoms continue to deteriorate and/or if their peak flow falls to 60% of their best.</td>
</tr>
<tr>
<td>Individualised using inhaled and oral steroids</td>
<td>Insufficient data to evaluate</td>
<td>Increasing inhaled corticosteroids is ineffective if patients are already taking moderate or high doses (≥400 micrograms daily) and these patients should be advised to move straight to the oral steroid step.</td>
</tr>
<tr>
<td>Individualised using oral steroids only</td>
<td>Insufficient data to evaluate</td>
<td>Those on low doses (eg 200 micrograms) of inhaled corticosteroids may be advised to increase the dose substantially (eg to 1,200 micrograms daily) at the onset of a deterioration.(^{200})</td>
</tr>
<tr>
<td>Individualised using inhaled corticosteroids</td>
<td></td>
<td>Patients who have stopped medication should be reminded to restart their inhaled corticosteroids.</td>
</tr>
</tbody>
</table>
5.3 SELF MANAGEMENT IN SPECIFIC PATIENT GROUPS

A range of different patient populations are included in the trials of self management. It cannot be assumed that a successful intervention in one setting will be feasible or appropriate in another.

5.3.1 PRIMARY CARE

Studies of self-management interventions based in primary care have shown that they can:

- reduce emergency use of healthcare resources, including ED attendances, hospital admissions and unscheduled consultations188,194
- improve markers of asthma control188,191,192,194-197,201

Implementation of self-management interventions is challenging. The improved asthma control demonstrated in trials of interventions delivered by members of the research team188,194 or in a centrally administered initiative195,196 are reflected in some,191,192,197,201 but not all,198,199 trials in which members of the practice team are trained to deliver self-management education in routine clinical care.

One study showed no difference in outcomes when self-management education was delivered by lay people compared to practice asthma nurses.193 Studies based in the USA suggest that in deprived and/or ethnic communities the involvement of community health workers reduces ED attendance.166

A Self-management education, supported by a written personalised asthma action plan, should be offered to all patients on general practice 'active asthma' registers.

A Primary care practices should ensure that they have trained professionals and an environment conducive to providing supported self management.

✓ Implementation of self-management interventions is challenging in the non-specialist environment of primary care and needs to consider not only specific training in self-management skills, but also the logistics of when and how self-management education is incorporated into routine care. Strategies that have been used in effective interventions include:

- the use of proactive triggers to ensure routine reviews
- structured protocols for asthma reviews
- support of community pharmacists
- routine mailing of educational resources
- telephone calls to provide ongoing support and advice
- IT-based education and monitoring
- involvement of community workers to support clinical teams in deprived and/or ethnic minority communities.
5.3.2 SECONDARY CARE

There is good evidence that self-management education targeted at people who have a history of ED attendances or hospital admissions can reduce subsequent use of healthcare resources. Self-management education delivered prior to discharge can reduce readmissions and should be a core component of discharge planning (see section 9.9.7).

One wide-reaching review of the evidence for self management in severe or difficult asthma concluded that provision of psychoeducational interventions (especially those incorporating formal self management) may reduce hospital admissions and, in children, improve symptoms.

Prior to discharge, inpatients should receive written personalised asthma action plans, given by healthcare professionals with expertise in providing asthma education.

5.3.3 SCHOOLCHILDREN

School-based asthma education has been shown to:

- improve process outcomes (knowledge, self efficacy, self-management behaviours)
- improve markers of asthma control (number of days and nights with asthma symptoms, school absences, asthma-related quality of life)

There was considerable heterogeneity in the school-based interventions, which incorporated combinations of classroom teaching for all pupils, peer support groups, individual education sessions with school nurses, interactive computer programmes, and involvement of parents.

School health services should consider providing in-school asthma self-management education programmes provided by appropriately trained personnel.

5.3.4 PRE-SCHOOL CHILDREN

There is a paucity of evidence about effective self-management strategies delivered to parents of pre-school children. Trials recruiting only pre-school children (5 years of age or under) showed no impact on emergency use of healthcare resources, including ED visits, hospital admissions and unscheduled consultations, and no reduction in symptoms, despite increased ownership of PAAPs.

Other trials including pre-school children and children up to the age of eight years showed only small and often transient effects of no apparent clinical significance.

5.3.5 ETHNIC MINORITY GROUPS

Interventions specifically designed for ethnic minority groups, predominantly deprived African-American, Hispanic or Puerto Rican populations from inner cities in the USA, can:

- reduce emergency use of healthcare resources, including ED attendances, hospital admissions and unscheduled consultations
- improve markers of asthma control
- improve process outcomes (knowledge)
In two UK-based RCTs, however, interventions which provided appropriate language materials and were delivered by bilingual professionals were reported as showing no or less benefit on healthcare outcomes in the South Asian population compared to the benefits seen in the white European population.188,189

There is insufficient evidence to identify all the aspects of cultural tailoring which may potentially contribute to effectiveness of self-management interventions, but addressing language barriers (for example, with appropriate language materials and bilingual support) is not sufficient to enable an intervention to deliver equivalent outcomes in an ethnic minority group compared to a white European group.188,189

The strategies employed in ethnic minority groups are varied and include community-based neighbourhood projects, family-based education, nurse-led home visits, IT-based programmes, and school-based educational interventions.180,181,182,183 No one strategy stands out as being always effective, or always ineffective. Lack of engagement with programmes and high drop-out rates are major barriers to effectiveness of self-management interventions.180,181,183,186 Reconfiguration of the supporting healthcare system appears to increase the impact.168

B Culturally appropriate supported self-management education should be provided for people with asthma in ethnic minority groups. Addressing language barriers is insufficient.

- Consideration should be given to:
 - translation of materials into community languages with ethnically appropriate pictures
 - asthma educators fluent in community languages
 - identifying culturally appropriate support agencies within the local community
 - inclusion of culturally specific beliefs and practices
 - reference to culturally appropriate role models
 - involvement of a local community health worker to support clinical teams.

5.4 ADHERENCE AND CONCORDANCE

The term adherence (or compliance) embodies a traditional model of prescriptive care which refers to the objectively measured usage of prescribed medication, or frequency of monitoring. The term ‘concordance’ signifies a negotiated agreement between the professional and the patient. Non-concordance describes an inability of both parties to come to an understanding, not merely a failure of the patient to follow the healthcare professional’s instructions.206 Sharing decision making and achieving concordance improves (though does not guarantee) adherence.207

5.4.1 ADHERENCE TO MONITORING AND TREATMENT

Adherence to regular monitoring with peak flow meters, even in clinical drug trials is poor, with recorded daily use as low as 6%.208,209 The lack of evidence supporting long-term peak flow monitoring,189,210-212 however, does not negate the use of home peak flow monitoring at critical times, for example at diagnosis and initial assessment, when assessing response to changes in treatment, and as part of a PAAP during asthma attacks.212 Comparison should be with the patient’s best peak flow (not predicted).150
It is estimated that between a third and a half of all medicines prescribed for long-term conditions are not taken as recommended,213 and evidence in asthma confirms widespread non-adherence to regular preventer medication,214-219 that increases over time.214,216 Poor adherence should always be considered when there is a failure to control asthma symptoms.

Non-adherence to medication use may be intentional and/or unintentional and may be understood as the result of the interaction of perceptual factors (for example, beliefs about illness and treatment) and practical factors (forgetfulness, capacity, resources and opportunity).213

A widely recognised model for understanding patients’ decisions about medication use is the Necessity-Concerns framework which describes the balance between the potential benefits and ‘necessity’ of taking prescribed treatment and the perceived disadvantages or ‘concerns’ about taking medication.220 The relative weight of these opposing arguments influences the decision to take medication (or not).221,222

5.4.2 ASSESSING MEDICATION ADHERENCE

In most clinical contexts, the key strategies for assessing adherence are self reporting and the prescribing record, although biochemical assays may have a role in asthma clinics for patients with severe asthma (see section 10.2.1). In a research context electronic dose monitoring is the gold standard; counting doses used is another approach that is frequently used.

Patient self reporting is simple, inexpensive and feasible in most clinical settings. Self reporting typically overestimates adherence by a third compared to electronic monitoring213,216,219, or dose counting.214,215 This applies both in trial populations214,216,219 and clinical settings.215 Underuse is over-reported,214-216,219 and overuse is under-reported,219 reflecting socially acceptable answers.213 Patients/caregivers who report missing doses or not taking medication are likely to be non-adherent,213,215,216 though their estimate of dosages taken may still be inaccurate.213 Being non-judgemental, and asking specific questions about use of a treatment over a short time period (for example, in the last week/month) can help elicit an accurate response.213 Questionnaires have been validated for use in research,220 but have not been validated as a tool in clinical use.213

Computerised prescribing records

Computerised prescribing records, normally readily available in primary care consultations and/or pharmacy dispensing records, provide a useful indication of adherence to prescribed asthma regimens. At an individual level, prescribing data does not correlate with self-reported adherence and may be a useful strategy for opening a discussion about suspected poor adherence.221 At a population level, formulae (such as ‘proportion of days covered’ by the prescription recorded over a defined period) have been devised to assess adherence from routine prescribing/dispensing databases.217,218,221,223

Biomarker testing

Biomarker testing with FeNO or biochemical urinary assays (for example a metabolite of fluticasone propionate) may have a role in establishing (non-)adherence in people with severe/difficult asthma.224,225 Suppression of FeNO after five days of directly observed inhaled steroid dosage has been shown to be an objective test to distinguish adherent from non-adherent patients with difficult asthma (see section 10.2.1).224
Electronic monitoring

Electronic monitoring is the gold standard for assessing adherence in the research context, although not normally available in routine clinical practice. Dose counting is also used as a comparator, although unlikely to be feasible in a clinical context.

D To assess adherence, ask specific questions about medication use and assess prescribing and any other data available. Explore attitudes to medication as well as practical barriers to adherence in a non-judgemental way.

✓ Questions about adherence should be open ended, acknowledge that poor adherence is the norm, and avoid use of potentially judgmental terminology. The questions are designed to stimulate an open discussion.

- Explore perceived benefits (“How do you think that the inhaler is helping you control your asthma?” “Are there times when you find that you don't need your inhaler?”)
- Ask about adverse reactions (“How much bother do you have from side effects?”)
- Acknowledge general concerns about regular medication (“Some people worry about taking regular medication… what do you think?”)
- Acknowledge practical difficulties with regular medication (“People sometimes find it difficult to remember to take regular treatment…”)
- Ask about adherence over a specific time period (“How often did you use your preventer inhaler last week?”)

5.4.3 INTERVENTIONS TO IMPROVE MEDICATION ADHERENCE

Six systematic reviews were identified that evaluated interventions to improve adherence, one specifically in asthma, and five including a number of long-term conditions including asthma. The body of evidence represents 26 unique asthma trials.

The interventions were divided into ‘informational’ interventions (individual and/or group sessions with or without written/electronic materials), or ‘behavioural’ interventions (including dosage simplification, regular monitoring including assessment of medication use with feedback, psychological therapies) or a combination of these two approaches.

Multifaceted interventions to improve adherence have:

- modest effects on adherence
- less, or sometimes no, effect on clinical outcomes

The effect is greater if the intervention:

- includes behavioural components
- includes practical facilitators (such as simplified dosage regimes), strategies to aid integration into daily routines, automated reminders, monitoring and follow up
- is monitored, delivered and sustained as part of a comprehensive programme of accessible proactive asthma care.
Innovative, IT-based ways to support adherence show some promise (for example, providing daily medication reminders, feedback on adherence, refill reminders) especially if they are interactive, but as components of, as opposed to replacement for, on-going supportive care (see section 14.4.1).

D Adherence to long-term asthma treatment should be routinely and regularly addressed by all healthcare professionals within the context of a comprehensive programme of accessible proactive asthma care.

Initiatives to promote adherence to regular treatment should consider:
- information requirements, for example individual and/or group sessions, written/electronic materials, ongoing access to information
- practical facilitators, for example simple dosage regimes, dose counters, reminders
- behavioural support, for example regular monitoring including assessment of medication use with feedback, counselling, psychological therapies
- context – accessible proactive asthma care, for example Chronic Care Model
- consultation skills required to achieve shared decision making: adherence is more likely when the patient and the healthcare professional agree that the action is appropriate.

5.5 IMPLEMENTATION IN PRACTICE

Despite the robust evidence base for self-management education, implementation in routine practice remains poor with only a third of people with asthma having a PAAP. Implementation in routine clinical practice depends as much on the context in which it is delivered as the content of the intervention. Given the diversity of healthcare systems, generalising approaches from one context to another is problematic. Despite these limitations, however, the evidence reviewed identified consistent messages that are suitable for adoption and adaptation in different healthcare settings.

A systematic review (including 14 RCTs, 2,438 patients, 107 doctors and 43 primary care teams) investigated the promotion of PAAP ownership and usage. In addition, 19 implementation studies from the USA, UK, Scandinavia, Italy, and Brazil were identified.

5.5.1 TYPES OF INTERVENTION

The interventions in the implementation studies adopted four main strategies:
- primarily professional training
- primarily organisational change
- primarily patient education
- a whole systems approach with components operating explicitly at patient, professional and organisational levels

Study designs varied, with five cluster randomised trials, a preference trial with randomised groups, or controlled implementation. Seven were based on longitudinal, often large, databases, one with a control cohort, and two uncontrolled before-and-after or cross-sectional studies.
5.5.2 IMPLEMENTATION OF INTERVENTIONS

Complex whole systems interventions in which motivated informed patients and trained professionals operate within an organisation with a culture of supported asthma self management were associated with:

- improved knowledge248 and action plan ownership241,246,250
- reduced unscheduled care247,248,252,255,256 and improved markers of control246-248,252,253

Implementing single components of the whole systems approach is insufficient to bring about consistent benefits. Improving professionals’ knowledge is a core component of effective self-management programmes, but on its own does not improve clinical outcomes198,199 Organisational change to support self management improves process outcomes such as the proportion of patients with PAAPs or achieving a review11,249,251 but improved asthma control in only one of the studies251 Targeting the patient with educational material246 support from pharmacists243 school244,254 or telephone calls195,244,245 improved medication use195,245 knowledge244 and ownership of PAAPs243 and had variable effects on clinical outcomes.

B Commissioners and providers of services for people with asthma should consider how they can develop an organisation which prioritises and actively supports self management. This should include strategies to proactively engage and empower patients and train and motivate professionals as well as providing an environment that promotes self management and monitors implementation.
6 Non-pharmacological management

There is a common perception amongst patients and carers that there are numerous environmental, dietary and other triggers of asthma and that avoiding these triggers will improve asthma and reduce the requirement for pharmacotherapy. Failure to address a patient, parent or carer’s concern about environmental triggers may compromise concordance with recommended pharmacotherapy. Evidence that non-pharmacological management is effective can be difficult to obtain and more well-controlled intervention studies are required.

This section distinguishes:

1. primary prevention - interventions introduced before the onset of disease and designed to reduce its incidence.

2. secondary prevention – interventions introduced after the onset of disease to reduce its impact.

6.1 PRIMARY PREVENTION

The evidence for primary interventional strategies is based predominantly on observational studies, although some interventions have been tested using experimental methods. Many are multifaceted and it can be difficult to disentangle the effects of one exposure or intervention from another.

6.1.1 MONO- AND MULTIFACETED ALLERGEN AVOIDANCE

Early life exposure to allergens (including aeroallergens and ingested food allergens) may lead to allergic sensitisation and so potentially increase the risk of subsequent asthma, particularly in children at high risk (that is, children with a family history of asthma or atopy, particularly a parental history). It is unclear whether the risk of developing asthma in children is reduced by interventions to reduce exposure to single allergens (monofaceted), or whether multifaceted interventions targeting the reduction of more than one type of allergen exposure simultaneously will lead to a better outcome or be more effective.

A Cochrane review of trials comparing single (six studies) or multiple (three studies) interventions with a no intervention control, reported that in children who are at risk of developing childhood asthma multifaceted interventions, which involve both dietary allergen reduction and environmental change to reduce exposure to inhaled allergens, reduced the odds of a doctor diagnosing asthma later in childhood by half (>5 years of age, odds ratio (OR) 0.52, 95% confidence interval (CI) 0.32 to 0.85). However, the effect of these multifaceted interventions on wheeze reported by parents was inconsistent and there was no beneficial effect on night-time coughing or breathlessness. These interventions can be costly, demanding and inconvenient to families, and the cost effectiveness is not established. Healthcare professionals can discuss and support this intervention in families who are motivated to follow the demanding programme.
In children at risk of developing asthma, there is no evidence that reducing in utero or early life exposure to single allergens (either to aeroallergens such as house dust mites or pets, or food allergens) is effective in reducing asthma and single (monofaceted) interventions were not significantly more effective than controls in the reduction of any outcomes.257

A Measures to reduce in utero or early life exposure to single aeroallergens, such as house dust mites or pets, or single food allergens, are not recommended for the primary prevention of asthma.

For children at risk of developing asthma, complex, multifaceted interventions targeting multiple allergens may be considered in families able to meet the costs, demands and inconvenience of such a demanding programme.

6.1.2 Aeroallergen Avoidance

House dust mites

Exposure to high levels of house dust mite allergen in early life is associated with an increased likelihood of sensitisation to house dust mite by three to seven years of age.258 Sensitisation to house dust mite is an important risk factor for the development of asthma,259,260 and a few studies have suggested that high early house dust mite exposure increases the risks of subsequent asthma.261,262 A UK study showed that low levels of house dust mite and cat allergen exposures in early life increased the risk of IgE sensitisation and asthma at five years, with some attenuation at high levels of exposure, but there were significant associations with family history and birth order.263

Outcomes from intervention studies attempting to reduce exposure to house dust mites are inconsistent. A multifaceted Canadian intervention study showed a reduced prevalence of doctor-diagnosed asthma but no impact on other allergic diseases, positive skin-prick tests or bronchial hyper-responsiveness;264 others have shown no effect on either allergic sensitisation or symptoms of allergic diseases.265 In one UK study, early results from environmental manipulation started in early pregnancy and focused mainly on house dust mite avoidance, showed reductions in some respiratory symptoms in the first year of life.266 Subsequent results showed a paradoxical effect with increased allergy but better lung function in the intervention group.267

The considerable variation in the methodology used in these studies precludes the pooling of data or meta-analyses.

A Healthcare professionals should not recommend house dust mite aeroallergen avoidance for the primary prevention of asthma.

Pets in the home

A large number of birth cohort studies, longitudinal cohort studies and cross-sectional studies have addressed whether exposure to pets in the home in early life increases or reduces the subsequent risk of asthma and allergy, with contradictory results. Four recent systematic reviews, synthesising evidence from overlapping data sources, have provided conflicting results. One review concluded that exposure to cats in early life has a slight preventative effect on subsequent asthma, while exposure to dogs increases risk.268 Another concluded, in contrast, that perinatal dog exposure protects against asthma, with no affect from cats.269 Methodological factors, however, such as avoidance behaviour in at-risk families and other potential confounders, may have affected the analyses. Two further reviews concluded that exposure to cats and/or dogs in early childhood did not impact on asthma or wheeze in school-aged children.270,271 The most methodologically sound study pooled individual participant data from 11 European birth cohort studies.
and so was able to harmonise exposure, outcome and age group definitions and use
individual data rather than pooled risk estimates in heterogeneous groups, to minimise
potential confounding.271 This review concluded that exposure to cats and/or dogs in
infancy does not impact on a diagnosis of asthma or on wheezing symptoms in later
life, although may influence allergic sensitisation, and that parents should not make
choices on pet ownership based on the desire to prevent or reduce asthma symptoms.
Several of the studies and reviews reported reduced allergic sensitisation in those with
early exposure to pets, but the clinical significance of this is uncertain.

B Healthcare professionals should not offer advice on pet ownership as a strategy
for preventing childhood asthma.

6.1.3 FOOD ALLERGEN AVOIDANCE

Sensitisation to foods, particularly eggs, frequently precedes the development of
aeroallergy and subsequent asthma.272 Food allergen avoidance in pregnancy and
postnatally has not been shown to prevent the later development of asthma.273
Allergen avoidance during pregnancy may adversely affect maternal, and perhaps
fetal, nutrition.274 High-dose food allergen exposure during pregnancy may reduce
subsequent sensitisation rates by inducing tolerance.275

B In the absence of any evidence of benefit and given the potential for adverse
effects, maternal food allergen avoidance during pregnancy and lactation is
not recommended as a strategy for preventing childhood asthma.

6.1.4 BREASTFEEDING

A systematic review of observational studies on the allergy preventive effects of
breastfeeding indicates that it is effective for all infants irrespective of family history of
allergy. The preventive effect is more pronounced in infants at high risk provided they are
breastfed for at least four months.276 However, not all studies have demonstrated benefit
and a large birth cohort reported no protective effect against atopy and asthma.277
Observational studies have the potential to be confounded by, for example higher rates
of breastfeeding in atopic families, and taking this into account, the weight of evidence
is in favour of breastfeeding as a preventive strategy.

C Breastfeeding should be encouraged for its many benefits, including a
potential protective effect in relation to early asthma.

6.1.5 MODIFIED INFANT MILK FORMULAE

Trials of modified milk formulae have not included sufficiently long follow up to establish
whether there is any impact on asthma. A Cochrane review identified inconsistencies in
findings and methodological concerns amongst studies, which mean that hydrolysed
formulae cannot currently be recommended as part of an asthma prevention strategy.278
A review of the use of soy formulae found no significant effect on asthma or any other
allergic disease.279

In the absence of any evidence of benefit from the use of modified infant milk formulae
it is not possible to recommend it as a strategy for preventing childhood asthma.
6.1.6 WEANING

There are conflicting data on the association between early introduction of allergenic foods into the infant diet and the subsequent development of allergy and atopic eczema. No evidence was identified in relation to asthma. In one study late introduction of egg was associated with a non-significant increase in wheezing in pre-school children. In the absence of evidence on outcomes in relation to asthma no recommendations on modified weaning can be made.

6.1.7 NUTRITIONAL SUPPLEMENTATION

Fish Oils

Fish oils have a high level of omega-3 polyunsaturated fatty acids (n-3PUFAs). Western diets have a low intake of n-3PUFAs with a corresponding increase in intake of n-6PUFAs. This change has been associated with increasing rates of allergic disease and asthma. Two randomised controlled studies have investigated early life fish oil dietary supplementation in relation to asthma outcomes in children at high risk of atopic disease (at least one parent or sibling had atopy with or without asthma). In a study, powered only to detect differences in cord blood, maternal dietary fish oil supplementation during pregnancy was associated with reduced cytokine release from allergen stimulated cord blood mononuclear cells. However, effects on clinical outcomes at one year, in relation to atopic eczema, wheeze and cough, were marginal. In a second study, fish oil supplementation started in early infancy with or without additional house dust mite avoidance, was associated with a significant reduction in wheeze at 18 months of age. By five years of age fish oil supplementation was not associated with effects on asthma or other atopic diseases.

In the absence of any evidence of benefit from the use of fish oil supplementation in pregnancy it is not possible to recommend it as a strategy for preventing childhood asthma.

Other nutrients

A number of observational studies have suggested an increased risk of subsequent asthma following reduced (maternal) intakes of selenium (based on umbilical cord levels), or vitamin E based on maternal pregnancy intake. No intervention studies in relation to selenium or vitamin E have yet been conducted and overall there is insufficient evidence to make any recommendations on maternal dietary supplementation as an asthma prevention strategy. Observational studies suggest that intervention trials are warranted.

6.1.8 WEIGHT REDUCTION IN OVERWEIGHT AND OBESE PATIENTS

There is consistent evidence that being overweight or obese increases the risk of a subsequent physician diagnosis of asthma by up to 50% in children and adults of both sexes. A high birth weight is also associated with a higher risk of asthma (risk ratio (RR) 1.2, 95% CI 1.1 to 1.3). The quality of the evidence is low as confounders were not adjusted for. In addition, since obesity can have direct effects on respiratory symptoms and on lung mechanics, the mechanism of this relationship is unclear.
Two systematic reviews looking at the association between being overweight or obese in childhood and the development of asthma concluded that high BMI increases the risk of incident asthma, with a dose dependent relationship that was stronger in boys. These reviews are, however, based on epidemiological studies and cannot confirm a causal link.

A systematic review of the association between maternal obesity and gestational weight gain in pregnancy, and childhood asthma, concluded that maternal obesity was associated with an increased risk of diagnosed asthma and of ever-wheeze in children from these pregnancies, with each 1 kg/m² increase in maternal BMI associated with a 2–3% increase in odds of childhood asthma. High gestational weight gain was associated with higher odds of asthma or ever-wheeze in children (OR 1.16). Prospective studies of weight-loss programmes during pregnancy for obese women and those with high gestational weight gain are needed to clarify the role of this intervention in the prevention of asthma in children resulting from these pregnancies.

C Weight reduction is recommended in obese patients to promote general health and to reduce subsequent respiratory symptoms consistent with asthma.

C Obese and overweight children should be offered weight-loss programmes to reduce the likelihood of respiratory symptoms suggestive of asthma.

6.1.9 MICROBIAL EXPOSURE

The ‘hygiene hypothesis’ suggested that early exposure to microbial products would switch off allergic responses thereby preventing allergic diseases such as asthma. The hypothesis is supported by some epidemiological studies comparing large populations who have or have not had such exposure.

The concept is sometimes described as the ‘microbial exposure hypothesis’. A double blind placebo controlled trial of the probiotic *Lactobacillus rhamnosus* GG given to mothers resulted in a reduced incidence of atopic eczema in their children but had no effect on IgE antibody or allergic skin test responses. The small sample size and short follow up in this study limit its interpretation. There remains insufficient understanding of the ecology of gut flora in infancy in relation to outcomes. Bifido-bacteria may be more important than lactobacilli in reducing susceptibility to allergic disease.

There is insufficient evidence to indicate that the use of dietary probiotics in pregnancy reduces the incidence of childhood asthma.

This is a key area for further work with longer follow up to establish outcomes in relation to asthma.

6.1.10 AVOIDANCE OF TOBACCO SMOKE AND OTHER AIR POLLUTANTS

No evidence has been found to support a link between exposure to environmental tobacco smoke (ETS) or other air pollutants and the induction of allergy.

There is an increased risk of infant wheezing associated with maternal smoking during pregnancy which adversely affects infant lung function. Evidence suggests that early life ETS exposure is associated with later persistent asthma with a strong interaction with genetic polymorphisms which affect antioxidant activity.

B Parents and parents-to-be should be advised of the many adverse effects which smoking has on their children including increased wheezing in infancy and increased risk of persistent asthma.
The limited data on antenatal or early life exposure to other pollutants suggest similar effects to those for ETS, namely increased infant wheezing, enhanced by additional ETS exposure and antioxidant gene variations. There is one small study suggesting that vitamin C supplementation will modify the combined effects of genetic polymorphisms and pollution on lung function in children with asthma. Further research is required before recommendations for practice can be made.

6.1.11 IMMUNISATION

In keeping with the microbial exposure hypothesis some studies have suggested an association between tuberculin responsiveness and subsequent reduced prevalence of allergy, implying a protective effect of Bacillus Calmette-Guérin (BCG). At present, it is not possible to determine whether poor tuberculin responsiveness represents an underlying defect which increases the risk of allergy and asthma or whether the immunisation itself has a protective effect.

Investigation of the effects of any other childhood immunisation suggests that at worst there is no influence on subsequent allergic disease and maybe some protective effect against the development of asthma.

All childhood immunisations should proceed normally as there is no evidence of an adverse effect on the incidence of asthma.

6.2 SECONDARY NON-PHARMACOLOGICAL PREVENTION

6.2.1 HOUSE DUST MITE AVOIDANCE

Allergic sensitisation to house dust mite-associated aeroallergens is common in people with asthma and exposure to house dust can act as a trigger in sensitised asthmatic individuals. Physical (for example mattress covers, vacuum cleaning, heating, ventilation, freezing, washing, air filtration and ionisers) and chemical (acaricides) measures to reduce house dust mite (HDM) aeroallergen levels and so reduce exposure have been advocated but there has been uncertainty as to whether the currently available physical and chemical measures, alone or in conjunction, can reduce the exposure levels sufficiently to allow a clinically relevant effect to be apparent.

A Cochrane review of 55 trials including 3,121 patients assessed the evidence relating to different methods of reducing exposure to HDM including:

- chemical measures, for example acaricides, (10 trials)
- physical measures, for example mattress covers (26 trials), vacuum cleaning, heating, ventilation, freezing, washing, air filtration and ionisers (37 trials)
- combinations of chemical and physical measures (8 trials).

The review showed no evidence of a beneficial effect from any individual or combination of treatments on any outcome measure, physiological or patient reported, including peak flow in the morning, number of patients improved, asthma symptom scores or medication usage. The review concludes that further studies using similar interventions are unnecessary.

Physical and chemical methods of reducing house dust mite levels in the home (including acaricides, mattress covers, vacuum cleaning, heating, ventilation, freezing, washing, air filtration and ionisers) are ineffective and should not be recommended by healthcare professionals.
6.2.2 OTHER ALLERGENS

Animal allergens, particularly from cat and dog, are potent provokers of asthma symptoms. The reported effects of removal of pets from homes are paradoxical, with either no benefit for asthma or a potential for continued high exposure to induce a degree of tolerance. In homes where there is no cat but still detectable cat allergen, there may be a benefit from introducing additional avoidance measures such as air filters and high efficiency vacuum cleaners for cat allergic patients.

Although fungal exposure has been strongly associated with hospitalisation and increased mortality in asthma, no controlled trials have addressed the efficacy of reducing fungal exposure in relation to control of asthma. Cockroach allergy is not a common problem in the UK and studies of attempts to avoid this allergen elsewhere have produced conflicting results.

Studies of individual aeroallergen avoidance strategies show that single interventions have limited or no benefit. A multifaceted approach is more likely to be effective if it addresses all the indoor asthma triggers. Such approaches may even be cost effective. A strategy with a potential impact on mites, mould allergens and indoor pollutants is the use of a mechanical ventilation system to reduce humidity and increase indoor air exchange. The only trial that has assessed this in a controlled fashion failed to demonstrate any significant effects, but the numbers involved were small. A systematic review of this topic concluded that more research is required.

6.2.3 SMOKING

Direct or passive exposure to cigarette smoke adversely affects quality of life, lung function, need for rescue medications for acute episodes of asthma and long-term control with ICS.

There are very few trials which have assessed smoking cessation in relation to asthma control. Two studies have demonstrated decreases in childhood asthma severity when parents were able to stop smoking. One study in adults with asthma suggested that smoking cessation improved asthma specific quality of life, symptoms and drug requirements. Intervention to reduce smoking has had disappointing outcomes. It is likely that more intensive intervention will be required to achieve meaningful outcomes.

Uptake of smoking in teenagers increases the risks of persisting asthma. One study showed a doubling of risk for the development of asthma over six years in 14 year old children who started to smoke (see section 7.2.6 for the effect of smoking on treatment).

Parents with asthma should be advised about the dangers, to themselves and to their children with asthma, of smoking, and be offered appropriate support to stop smoking.

6.2.4 AIR POLLUTION

Challenge studies demonstrate that various pollutants can enhance the response to allergen inhalation in patients with asthma. Time-series studies suggest that air pollution may provoke acute asthma attacks or aggravate existing chronic asthma although the effects are very much less than in those with infection or allergen exposure. Much less attention has been focused on indoor pollutants in relation to asthma and more work is required.

Information on current levels of air pollution, recommended actions and health advice is available from The Daily Air Quality Indicator (www.uk-air.defra.gov.uk/air-pollution/daqi).
6.2.5 ELECTROLYTES
Increasing dietary sodium has been implicated in the geographical variations in asthma mortality and high sodium intake is associated with increased bronchial hyper-responsiveness. A systematic review of intervention studies reducing salt intake identified only minimal effects and concluded that dietary salt reduction could not be recommended in the management of asthma. Low magnesium intake has been associated with a higher prevalence of asthma with increasing intake resulting in reduced bronchial hyper-responsiveness and higher lung function. Magnesium plays a beneficial role in the treatment of asthma through bronchial smooth muscle relaxation, leading to the use of intravenous or inhaled preparations of magnesium sulphate for acute asthma attacks. Studies of oral supplementation are limited and more trials are required.

6.2.6 FISH OILS/LIPIDS
In vitro studies suggest that supplementing the diet with n-3PUFAs, which are most commonly found in fish oils, might reduce the inflammation associated with asthma. Results from observational studies are inconsistent and a Cochrane review of nine RCTs concluded that there was insufficient evidence to recommend fish oil supplementation for the treatment of asthma.

6.2.7 ANTIOXIDANTS
Observational studies have reported that low vitamin C, vitamin E and selenium intakes are associated with a higher prevalence of asthma. Intervention studies suggest that neither supplementation with vitamin C, vitamin E nor selenium is associated with clinical benefits in people with asthma. Observational studies in both adults and children have also consistently shown that a high intake of fresh fruit and vegetable is associated with less asthma and better pulmonary function. No intervention studies evaluating the intake of fruit or vegetables and their effects on asthma have been reported.

6.2.8 WEIGHT REDUCTION IN OVERWEIGHT AND OBESE PATIENTS WITH ASTHMA
The current evidence base for weight reduction interventions to improve asthma control is inadequate in quantity and quality. A Cochrane review concluded that as the benefit of weight loss as an intervention for asthma control is uncertain, “...clinicians should be prepared to help patients to make a decision that is consistent with their own values...” The management of obesity is covered in SIGN 115. Two more recent RCTs (one small, one large) in adults and one pilot RCT in children investigating the effects of interventions to reduce weight on asthma control and biomarkers of asthma severity, reported reductions in BMI but varying effects on asthma control and biomarkers. The pilot study in children (n=32) reported that a 10-week dietary intervention improved asthma control and lung function but had no effect on inflammation. This study was not, however, powered to determine clinical changes; baseline differences between control and intervention groups and in interactions with healthcare staff may have influenced the results. In adults, the smaller trial (n=46) combining dietary (including two free meal replacements a day) and exercise (free gym membership and personal training sessions) components reported improved lung function, asthma symptoms and biomarkers of neutrophilic inflammation with a 5–10% weight loss. The larger trial (n=330), however, reported no significant differences in asthma outcomes between obese adults with asthma receiving a weight loss intervention (combining dietary and exercise components) and those in the control group. Weight loss of more than 10% in either group was, however, associated with improvements in asthma symptom control compared with those with unchanged weight.
Although evidence is limited, these studies show that dietary and weight-loss interventions are feasible in overweight or obese adults and children with asthma and that they may improve asthma control, lung function and inflammation, although weight loss of greater than 10% may be necessary to achieve benefit.

B Weight-loss interventions (including dietary and exercise-based programmes) can be considered for overweight and obese adults and children with asthma to improve asthma control.

6.2.9 PROBIOTICS

Studies have suggested that an imbalance in gut flora is associated with a higher risk of development of allergy.\(^3\)\(^6\)\(^2\) Trials have investigated the use of probiotics in the treatment of established allergic disease with variable results.\(^3\)\(^6\)\(^3\),\(^3\)\(^6\)\(^4\) Only one study focused on asthma, finding a decrease in eosinophilia but no effect on clinical parameters.\(^3\)\(^6\)\(^5\)

In the absence of evidence of benefit, it is not possible to recommend the use of probiotics in the management of asthma.

6.2.10 IMMUNISATIONS

A number of large studies have concluded that high vaccination coverage has no significant impact on any allergic outcome or asthma. There is a suggestion that the higher the vaccine coverage the greater the possibility that there is a degree of protection against the development of allergy in the first years of life.\(^3\)\(^6\)\(^6\)-\(^3\)\(^6\)\(^9\)

There is some discussion about whether BCG immunisation may confer protection against allergy and asthma. Research has focused on primary prophylaxis, although there are some studies investigating the use of BCG, with or without allergen, as a means to switch off allergic immune responses. There are some observations suggesting that benefit might occur,\(^3\)\(^7\)\(^0\) but results of trials have been disappointing.\(^3\)\(^7\)\(^1\),\(^3\)\(^7\)\(^2\) This is an area that requires further investigation.

There has been concern that influenza vaccination might aggravate respiratory symptoms, although any such effect would be outweighed by the benefits of the vaccination.\(^3\)\(^7\)\(^3\) Studies in children have suggested that immunisation with the vaccine does not exacerbate asthma,\(^3\)\(^7\)\(^4\) but has a small beneficial effect on quality of life in children with asthma.\(^3\)\(^7\)\(^5\) The immune response to the immunisation may be adversely affected by high-dose ICS therapy and this requires further investigation.\(^3\)\(^7\)\(^6\) A Cochrane review of pneumococcal vaccine found very limited evidence to support its use specifically in individuals with asthma.\(^3\)\(^7\)\(^7\)

B Immunisations should be administered independent of any considerations related to asthma. Responses to vaccines may be attenuated by high-dose inhaled corticosteroids.
6.2.11 ACUPUNCTURE

A Cochrane review of 21 trials highlighted many methodological problems with the studies reviewed. Only seven of the trials, involving 174 patients, employed randomisation to active (recognised in traditional Chinese medicine to be of benefit in asthma) or sham acupuncture points (with no recognised activity) for the treatment of persistent or chronic asthma. Blinding was a major problem in the assessment of the results and there were considerable inconsistencies in methodology. The review concluded that there was no evidence for a clinically valuable benefit from acupuncture and no significant benefits in relation to lung function. A later systematic review and meta-analysis of 11 randomised controlled trials found no evidence of an effect in reducing asthma severity but a suggestion that where bronchoconstriction was induced to establish efficacy of acupuncture there was a beneficial effect. Concern was expressed about potential preferential publication in favour of positive outcome studies. Two other trials of acupuncture in relation to induced asthma were also negative.

6.2.12 AIR IONISERS

Ionisers have been widely promoted as being of benefit for patients with asthma. A Cochrane review of five studies using negative ion generators and one with a positive ion generator found no evidence of benefit in reducing symptoms in patients with asthma. One study demonstrated an increase in night-time cough to a level which approached statistical significance.

Air ionisers are not recommended for the treatment of asthma.

6.2.13 BREATHING EXERCISES

Behavioural programmes centred on breathing exercises and dysfunctional breathing reduction techniques (including physiotherapist-delivered breathing programmes such as the Papworth method, and the Buteyko method) can improve asthma symptoms, quality of life and reduce bronchodilator requirement in adults with asthma, although have little effect on lung function. These techniques involve instruction by a trained therapist in exercises to reduce respiratory rate, minute volume and to promote nasal, diaphragmatic breathing. Trials that include more than five hours of intervention appeared more likely to be effective. They can help patient’s experience of their condition and quality of life although do not affect lung function or airways inflammation. They should ideally be provided as part of integrated medical care.

There is currently insufficient evidence relating to other breathing exercise methods, such as yoga breathing techniques and inspiratory muscle training, on which to base a recommendation.

Breathing exercise programmes (including physiotherapist-taught methods) can be offered to people with asthma as an adjuvant to pharmacological treatment to improve quality of life and reduce symptoms.
6.2.14 HERBAL AND TRADITIONAL CHINESE MEDICINE

A Cochrane review identified 17 trials, nine of which reported some improvement in lung function but it was not clear that the results would be generalisable.\(^{385}\) A more recent double blind placebo-controlled trial of a Chinese herb decoction (Ding Chuan Tang) showed improvement in airway hyper-responsiveness in children with stable asthma.\(^{386}\) It is difficult to disentangle the effects of multiple ingredients; Ding Chuan Tang for example contains nine components. In a second study, 100 children with asthma found that a five-herb mixture gave some benefits in relation to lung function and symptoms compared with placebo.\(^{387}\)

The conclusions of these trials of Chinese herbal therapy are not generalisable due to variations in the herbal mixtures and study designs. There are likely to be pharmacologically active ingredients in the mixtures and further investigations are warranted. There is a need for large appropriately powered placebo-controlled studies.

6.2.15 HOMEOPATHY

A Cochrane review identified only three methodologically sound randomised controlled trials, two of which reported some positive effects. A criticism of the studies was that they did not employ individualised homeopathy, which is the essence of this approach to treatment.\(^{388}\) A more recent trial of individualised homeopathy in childhood asthma, which was placebo controlled and appropriately powered, failed to show any evidence of benefit over conventional treatment in primary care.\(^{389}\)

6.2.16 HYPNOSIS AND RELAXATION THERAPIES

A systematic review of relaxation therapies, including hypnotherapy, identified five controlled trials, two of which showed some benefits. Overall the methodology of the studies was poor and the review concluded that there was a lack of evidence of efficacy but that muscle relaxation could conceivably benefit lung function in patients with asthma.\(^{390}\)

6.2.17 MANUAL THERAPY INCLUDING MASSAGE AND SPINAL MANIPULATION

A Cochrane review identified four relevant RCTs.\(^{391}\) The two trials of chiropractic suggest that there is no role for this modality of treatment in the management of asthma. No conclusions can be drawn on massage therapy.

6.2.18 PHYSICAL EXERCISE TRAINING

A Cochrane review has shown no effect of physical training on PEF, FEV\(_1\), FVC or ventilation at maximal exercise capacity (V\(_{\text{Emax}}\)).\(^{392}\) However, oxygen consumption, maximum heart rate, and work capacity all increased significantly. Most studies discussed the potential problems of exercise-induced asthma, but none made any observations on this phenomenon. As physical training improves indices of cardiopulmonary efficiency, it should be seen as part of a general approach to improving lifestyle and rehabilitation in people with asthma, with appropriate precautions advised about exercise-induced asthma (see section 7.11.2).
6.2.19 FAMILY THERAPY

A Cochrane review identified two trials, in 55 children, showing that family therapy may be a useful adjunct to medication in children with asthma. Small study size limits the recommendations.

☑ In difficult childhood asthma, there may be a role for family therapy as an adjunct to pharmacotherapy.
7 Pharmacological management

The aim of asthma management is control of the disease. Complete control of asthma is defined as:
- no daytime symptoms
- no night-time awakening due to asthma
- no need for rescue medication
- no asthma attacks
- no limitations on activity including exercise
- normal lung function (in practical terms FEV₁ and/or PEF>80% predicted or best)
- minimal side effects from medication.

Lung function measurements cannot be reliably used to guide asthma management in children under five years of age.

In clinical practice patients may have different goals and may wish to balance the aims of asthma management against the potential side effects or inconvenience of taking medication necessary to achieve perfect control.

A phased approach aims to abolish symptoms as soon as possible and to optimise peak flow by starting treatment at the level most likely to achieve this. Patients should start treatment at the level most appropriate to the initial severity of their asthma. The aim is to achieve early control and to maintain it by increasing treatment as necessary and decreasing treatment when control is good (see Figures 2 and 3 for summaries of management in adults and children).

Before initiating a new drug therapy practitioners should check adherence with existing therapies (see section 5.4), check inhaler technique (see section 8), and eliminate trigger factors (see section 6).

Until May 2009 all doses of ICS in this section were referenced against beclometasone dipropionate (BDP) given via chlorofluorocarbon metered dose inhalers (CFC-MDIs). BDP-CFC is now unavailable. There are differences in how the doses of ICS are expressed (ex-valve - labelled or ex-actuator - delivered) so it is increasingly difficult to cover all the possible doses in the text. The doses of ICS are therefore expressed as very low (generally paediatric doses), low (generally starting dose for adults), medium and high (see Tables 9 and 10). Adjustments to doses will have to be made for other inhaler devices and other corticosteroid molecules (see section 8.2).

Recommendations in sections 7 and 8 have been graded and the supporting evidence assessed for adults and adolescents over 12 years old, children aged 5–12 years, and children aged under 5 years. The evidence is less clear in children under two and the threshold for seeking an expert opinion should be lowest in these children.

Recommendation does not apply to this age group.
7.1 INTERMITTENT RELIEVER THERAPY

Adults and children with a diagnosis of asthma should be prescribed a short-acting bronchodilator to relieve symptoms. For those with infrequent short-lived wheeze occasional use of reliever therapy may be the only treatment required. For exercise-induced asthma see section 7.11.2.

The following medicines act as short-acting bronchodilators:

- inhaled short-acting β₂ agonists
- inhaled ipratropium bromide
- β₂ agonist tablets or syrup
- theophyllines

Short-acting inhaled β₂ agonists work more quickly and/or with fewer side effects than the alternatives.

A B D Prescribe an inhaled short-acting β₂ agonist as short term reliever therapy for all patients with symptomatic asthma.

7.1.1 FREQUENCY OF DOSING OF INHALED SHORT-ACTING β₂ AGONISTS

Using short-acting β₂ agonists as required is at least as good as regular (four times daily) administration.

Good asthma control is associated with little or no need for short-acting β₂ agonist.

Anyone prescribed more than one short-acting bronchodilator inhaler device a month should be identified and have their asthma assessed urgently and measures taken to improve asthma control if this is poor.

7.2 REGULAR PREVENTER THERAPY

Treatments have been judged on their ability to improve symptoms, improve lung function, and prevent asthma attacks, with an acceptable safety profile. Improvement of quality of life, while important, is the subject of too few studies to be used to make recommendations at present.

7.2.1 INHALED CORTICOSTEROIDS

Inhaled corticosteroids are the most effective preventer drug for adults and older children for achieving overall treatment goals. There is an increasing body of evidence demonstrating that, at recommended doses, they are also safe and effective in children under five with asthma.

Many non-atopic children under five with recurrent episodes of viral-induced wheezing do not go on to have chronic atopic asthma. The majority do not require treatment with regular ICS (see section 3.3).

A A A Inhaled corticosteroids are the recommended preventer drug for adults and children for achieving overall treatment goals.
Inhaled corticosteroids should be considered for adults, children aged 5–12 and children under the age of five with any of the following features: using inhaled β₂ agonists three times a week or more; symptomatic three times a week or more; or waking one night a week. In addition, ICS should be considered in adults and children aged 5–12 who have had an asthma attack requiring oral corticosteroids in the last two years.413-417

Inhaled corticosteroids should be considered for patients with any of the following asthma-related features:

- asthma attack in the last two years
- using inhaled β₂ agonists three times a week or more
- symptomatic three times a week or more
- waking one night a week.

Alternative initial preventer therapies are available but are less effective than ICS (see section 7.2.7).

7.2.2 STARTING DOSE OF INHALED CORTICOSTEROIDS

In mild to moderate asthma, starting at high doses of ICS and decreasing treatment confers no benefit.418

Start patients at a dose of inhaled corticosteroids appropriate to the severity of disease.

A reasonable starting dose of inhaled corticosteroids will usually be low dose for adults (see Table 9) and very low dose for children (see Table 10).

Tritrate the dose of inhaled corticosteroid to the lowest dose at which effective control of asthma is maintained.

7.2.3 FREQUENCY OF DOSING OF INHALED CORTICOSTEROIDS

Most current ICS are slightly more effective when taken twice rather than once daily, but may be used once daily in some patients with milder disease and good or complete control of their asthma.3,398,415,419,420

There is little evidence of benefit for dosage frequency more than twice daily.398

An RCT comparing daily ICS with intermittent (rescue) ICS in children aged 6–18 years with mild persistent asthma suggests that daily ICS are more effective at preventing asthma attacks.421

Give inhaled corticosteroids initially twice daily (except ciclesonide which is given once daily).

Once a day inhaled corticosteroids at the same total daily dose can be considered if good control is established.
7.2.4 COMPARISON OF INHALED CORTICOSTEROIDS

Many studies comparing different ICS are of inadequate design and have been omitted from further assessment. In view of the clear differences between normal volunteers and asthma patients in the absorption of ICS, data from normal volunteers have not been taken into account. Only studies in which more than one dose of at least one of the ICS or both safety and efficacy had been studied together in the same trial were evaluated.

Non-blinded studies also had to be considered because of the problems of obtaining competitors’ delivery devices. A series of Cochrane reviews comparing different ICS using a different methodology have come to the same conclusion.

BDP and budesonide are approximately equivalent in clinical practice, although there may be variations with different delivery devices. There is limited evidence from two open studies of suboptimal design that budesonide via the Turbohaler® is more clinically effective. However, at present a 1:1 ratio should be assumed when changing between BDP and budesonide.

Fluticasone propionate provides equal clinical activity to BDP and budesonide at half the dosage. The evidence that it causes fewer side effects at doses with equal clinical effect is limited. Mometasone appears to provide equal clinical activity to BDP and budesonide at half the dosage. It is difficult to establish the exact equipotent dose of fluticasone furoate.

7.2.5 SAFETY OF INHALED CORTICOSTEROIDS

The safety of ICS is of crucial importance and a balance between benefits and risks for each individual needs to be assessed. Account should be taken of other topical steroid therapy when assessing systemic risk. It has been suggested that steroid warning cards (for example the High Dose Inhaled Corticosteroid Safety Card developed by the London Respiratory Network for NHS England) should be issued to patients on higher dose ICS, but the benefits and possible disadvantages, particularly with regard to adherence, to such a policy remain to be established.

Adults

There is little evidence that low doses cause any short-term detrimental effects apart from the local side effects of dysphonia and oral candidiasis. However, the possibility of long-term effects on bone has been raised. One systematic review reported no effect on bone density at doses up to 1,000 micrograms BDP per day. The significance of small biochemical changes in adrenocortical function is unknown.

Titrte the dose of inhaled corticosteroid to the lowest dose at which effective control of asthma is maintained.
Children

Administration of medium or high dose ICS (See Table 10) may be associated with systemic side effects. These may include growth failure and adrenal suppression. Isolated growth failure is not a reliable indicator of adrenal suppression and monitoring growth cannot be used as a screening test of adrenal function.

Clinical adrenal insufficiency has been identified in a small number of children who have become acutely unwell at the time of intercurrent illness. Most of these children had been treated with high doses of ICS. The dose or duration of ICS treatment required to place a child at risk of clinical adrenal insufficiency is unknown but is likely to occur at ≥800 micrograms BDP per day or equivalent (medium dose ICS and above). The low-dose adrenocorticotropic hormone test is considered to provide a physiological stimulation of adrenal responsiveness but it is not known how useful such a sensitive test is at predicting clinically relevant adrenal insufficiency. In addition, it is unknown how frequently tests of adrenal function would need to be repeated if a child remained on high-dose inhaled corticosteroid. At higher doses, add-on agents, for example, long-acting β₂ agonists, should be actively considered.

While the use of ICS may be associated with adverse effects (including the potential to reduced bone mineral density) with careful ICS dose adjustment this risk is likely to be outweighed by their ability to reduce the need for multiple bursts of oral corticosteroids.

- Monitor growth (height and weight centile) of children with asthma on an annual basis.

The lowest dose of inhaled corticosteroids compatible with maintaining asthma control should be used.

For children treated with medium or high dose ICS:

- Specific written advice about steroid replacement in the event of a severe intercurrent illness or surgery should be part of the management plan.

- The child should be under the care of a specialist paediatrician for the duration of the treatment.

Adrenal insufficiency is a possibility in any child maintained on ICS presenting with shock or a decreased level of consciousness; serum biochemistry and blood glucose levels should be checked urgently. Intramuscular (IM) hydrocortisone may also be required.

7.2.6 SMOKING AND INHALED CORTICOSTEROIDS

Current and previous smoking reduces the effect of ICS, which may be overcome with increased doses. Patients should be advised that smoking reduces the effectiveness of therapy.

- Clinicians should be aware that higher doses of inhaled corticosteroids may be needed in patients who are smokers or ex-smokers.
7.2.7 OTHER PREVENTER THERAPIES

Inhaled corticosteroids are the first choice preventer drug. There are alternative, less effective preventer therapies for patients taking short-acting β₂ agonists alone.

- Leukotriene receptor antagonists (LTRA) have some beneficial clinical effect\(^{398,434,435}\)
 - In children under five years who are unable to take ICS, leukotriene receptor antagonists may be used as an alternative preventer\(^{36,437}\)
- Sodium cromoglicate and nedocromil sodium
 - Sodium cromoglicate is of some benefit in adults\(^3,438\) and is effective in children aged 5–12\(^{399}\)
 - Nedocromil sodium is of benefit in adults and children ≥5\(^3,440\)
 - There is no clear evidence of benefit with sodium cromoglicate in children aged <5\(^{441}\)
- Theophyllines have some beneficial effect\(^3,397\)
- Antihistamines and ketotifen are ineffective.\(^{442}\)

<table>
<thead>
<tr>
<th></th>
<th>>12 years</th>
<th>5-12 years</th>
<th><5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukotriene</td>
<td>1**</td>
<td>1**</td>
<td>1+</td>
</tr>
<tr>
<td>Sodium cromoglicate</td>
<td>1+</td>
<td>1+</td>
<td></td>
</tr>
<tr>
<td>Theophyllines</td>
<td>1**</td>
<td>1**</td>
<td>1+</td>
</tr>
<tr>
<td>Antihistamines</td>
<td>1**</td>
<td>1**</td>
<td>1+</td>
</tr>
</tbody>
</table>
Table 9: Categorisation of inhaled corticosteroids by dose - adults* (see also Figure 2)

<table>
<thead>
<tr>
<th>ICS</th>
<th>Dose</th>
<th>Low dose</th>
<th>Medium dose</th>
<th>High dose#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressurised metered dose inhalers (pMDI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beclometasone dipropionate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-proprietary</td>
<td>100 micrograms two puffs twice a day</td>
<td>200 micrograms two puffs twice a day</td>
<td>200 micrograms four puffs twice a day</td>
<td></td>
</tr>
<tr>
<td>Clenil Modulate</td>
<td>100 micrograms two puffs twice a day</td>
<td>200 micrograms two puffs twice a day</td>
<td>250 micrograms two puffs twice a day</td>
<td></td>
</tr>
<tr>
<td>Qvar (extrafine)</td>
<td>50 micrograms two puffs twice a day</td>
<td>100 micrograms two puffs twice a day</td>
<td>100 micrograms four puffs twice a day</td>
<td></td>
</tr>
<tr>
<td>Qvar autohaler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qvar Easi-breathe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciclesonide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alvesco Aerosol inhaler</td>
<td>80 micrograms two puffs once a day</td>
<td>160 micrograms two puffs once a day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluticasone propionate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flixotide Evohaler</td>
<td>50 micrograms two puffs twice a day</td>
<td>125 micrograms two puffs twice a day</td>
<td>250 micrograms two puffs twice a day</td>
<td></td>
</tr>
<tr>
<td>Dry powder inhalers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beclometasone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-proprietary Easyhaler</td>
<td>200 micrograms one puff twice a day</td>
<td>200 micrograms two puffs twice a day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asmabec</td>
<td>100 micrograms one puff twice a day</td>
<td>100 micrograms two puffs twice a day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budesonide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-proprietary Easyhaler</td>
<td>100 micrograms two puffs twice a day</td>
<td>200 micrograms two puffs twice a day</td>
<td>400 micrograms two puffs twice a day</td>
<td></td>
</tr>
<tr>
<td>Budelin Novolizer</td>
<td></td>
<td></td>
<td>200 micrograms four puffs twice a day</td>
<td></td>
</tr>
<tr>
<td>Pulmicort Turbohaler</td>
<td>100 micrograms two puffs twice a day</td>
<td>200 micrograms two puffs twice a day</td>
<td>400 micrograms two puffs twice a day</td>
<td></td>
</tr>
<tr>
<td>Fluticasone propionate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flixotide Accuhaler</td>
<td>100 micrograms one puff twice a day</td>
<td>250 micrograms one puff twice a day</td>
<td>500 micrograms one puff twice a day</td>
<td></td>
</tr>
<tr>
<td>Mometasone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asmanex Twisthaler</td>
<td>200 micrograms one puff twice a day</td>
<td>400 micrograms one puff twice a day</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Different products and doses are licensed for different age groups and some may be applicable to older children. Prior to prescribing, the relevant summary of product characteristics (SPC) should be checked (www.medicines.org.uk/emc).

* High doses (shaded boxes) should only be used after referring the patient to secondary care.
Table 9 (continued): Categorisation of inhaled corticosteroids by dose - adults* (see also Figure 2)

<table>
<thead>
<tr>
<th>ICS</th>
<th>Low dose</th>
<th>Medium dose</th>
<th>High dose#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combination inhalers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beclometasone dipropionate (extrafine) with formoterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fostair (pMDI)</td>
<td>100/6 one puff twice a day</td>
<td>100/6 two puffs twice a day</td>
<td>200/6 two puffs twice a day</td>
</tr>
<tr>
<td>Fostair (NEXThaler)</td>
<td>100/6 one puff twice a day</td>
<td>100/6 two puffs twice a day</td>
<td>200/6 two puffs twice a day</td>
</tr>
<tr>
<td>Budesonide with formoterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DuoResp Spiromax</td>
<td>200/6 one puff twice a day</td>
<td>200/6 two puffs twice a day</td>
<td>400/12 two puffs twice a day</td>
</tr>
<tr>
<td>Symbicort Turbohaler</td>
<td>100/6 two puffs twice a day</td>
<td>200/6 two puffs twice a day</td>
<td>400/12 two puffs twice a day</td>
</tr>
<tr>
<td></td>
<td>200/6 one puff twice a day</td>
<td>400/12 one puff twice a day</td>
<td></td>
</tr>
<tr>
<td>Fluticasone propionate with formoterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flutiform</td>
<td>50/5 two puffs twice a day</td>
<td>125/5 two puffs twice a day</td>
<td>250/10 two puffs twice a day</td>
</tr>
<tr>
<td>Fluticasone propionate with salmeterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seretide Accuhaler</td>
<td>100/50 one puff twice a day</td>
<td>250/50 one puff twice a day</td>
<td>500/50 one puff twice a day</td>
</tr>
<tr>
<td>Seretide Evohaler</td>
<td>50/25 two puffs twice a day</td>
<td>125/25 two puffs twice a day</td>
<td>250/25 two puffs twice a day</td>
</tr>
<tr>
<td>Fluticasone furoate with vilanterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relvar</td>
<td>92/22 one puff once a day</td>
<td>184/22 one puff once a day</td>
<td></td>
</tr>
</tbody>
</table>

* Different products and doses are licensed for different age groups and some may be applicable to older children. Prior to prescribing, the relevant summary of product characteristics (SPC) should be checked (www.medicines.org.uk/emc).

High doses (shaded boxes) should only be used after referring the patient to secondary care.
Table 10: Categorisation of inhaled corticosteroids by dose - children* (see also Figure 3)

<table>
<thead>
<tr>
<th>ICS</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Very low dose</td>
</tr>
<tr>
<td>Pressurised metered dose inhalers (pMDI) with spacer</td>
<td></td>
</tr>
<tr>
<td>Beclometasone dipropionate</td>
<td></td>
</tr>
<tr>
<td>Non-proprietary</td>
<td>50 micrograms two puffs twice a day</td>
</tr>
<tr>
<td>Clenil Modulite</td>
<td>50 micrograms two puffs twice a day</td>
</tr>
<tr>
<td>Qvar (extrafine)</td>
<td>50 micrograms two puffs twice a day</td>
</tr>
<tr>
<td>Qvar autohaler</td>
<td></td>
</tr>
<tr>
<td>Qvar Easi-breathe</td>
<td></td>
</tr>
<tr>
<td>Ciclesonide</td>
<td></td>
</tr>
<tr>
<td>Alvesco Aerosol inhaler</td>
<td>80 micrograms two puffs once a day</td>
</tr>
<tr>
<td>Fluticasone propionate</td>
<td></td>
</tr>
<tr>
<td>Flixotide Evohaler</td>
<td>50 micrograms one puff twice a day</td>
</tr>
<tr>
<td>Dry powder inhalers</td>
<td></td>
</tr>
<tr>
<td>Beclometasone</td>
<td></td>
</tr>
<tr>
<td>Asmabec</td>
<td>100 micrograms one puff twice a day</td>
</tr>
<tr>
<td>Budesonide</td>
<td></td>
</tr>
<tr>
<td>Non-proprietary</td>
<td>100 micrograms two puffs twice a day</td>
</tr>
<tr>
<td>Easyhaler</td>
<td></td>
</tr>
<tr>
<td>Pulmicort Turbohaler</td>
<td>100 micrograms one puff twice a day</td>
</tr>
<tr>
<td></td>
<td>200 micrograms one puff twice a day</td>
</tr>
<tr>
<td>Fluticasone propionate</td>
<td></td>
</tr>
<tr>
<td>Flixotide Accuhaler</td>
<td>50 micrograms one puff twice a day</td>
</tr>
<tr>
<td>Mometasone</td>
<td></td>
</tr>
<tr>
<td>Asmanex Twisthaler</td>
<td>200 micrograms one puff twice a day</td>
</tr>
<tr>
<td>Combination inhalers</td>
<td></td>
</tr>
<tr>
<td>Budesonide with formoterol</td>
<td></td>
</tr>
<tr>
<td>Symbicort Turbohaler</td>
<td>100/6 one puff twice a day</td>
</tr>
<tr>
<td></td>
<td>200/6 one puff twice a day</td>
</tr>
<tr>
<td>Fluticasone propionate with salmeterol</td>
<td></td>
</tr>
<tr>
<td>Seretide Accuhaler</td>
<td>100/50 one puff twice a day</td>
</tr>
<tr>
<td>Seretide Evohaler</td>
<td>50/25 two puffs twice a day</td>
</tr>
</tbody>
</table>

* Different products and doses are licensed for different age groups and some are not licensed for use in children. Prior to prescribing, the relevant summary of product characteristics (SPC) should be checked (www.medicines.org.uk/emc).

* Medium doses (shaded boxes) should only be used after referring the patient to secondary care.
7.3 INITIAL ADD-ON THERAPY

A proportion of patients with asthma may not be adequately controlled with low-dose ICS alone. Before initiating a new drug therapy practitioners should recheck adherence (see section 5.4), inhaler technique and eliminate trigger factors. The duration of a trial of add-on therapy will depend on the desired outcome. For instance, preventing nocturnal awakening may require a relatively short trial of treatment (days or weeks), whereas preventing asthma attacks or decreasing steroid tablet use may require a longer trial of therapy (weeks or months). If there is no response to treatment the drug should be discontinued.

7.3.1 CRITERIA FOR INTRODUCTION OF ADD-ON THERAPY

No exact dose of ICS can be deemed the correct dose at which to add another therapy. The addition of other treatment options to ICS has been investigated at doses from 200–1,000 micrograms BDP in adults and up to 400 micrograms BDP in children. Many patients will benefit more from add-on therapy than from increasing ICS above doses as low as 200 micrograms BDP/day. At doses of ICS above 800 micrograms BDP/day side effects become more frequent. An absolute threshold for introduction of add-on therapy in all patients cannot be defined.

7.3.2 INHALED LONG-ACTING β₂ AGONIST

The addition of an inhaled long-acting β₂ agonist (LABA) to ICS alone improves lung function and symptoms, and decreases asthma attacks in adults and children. Long-acting inhaled β₂ agonists should not be used without ICS.

Evidence to guide the choice of initial add-on therapy is stronger in adults than in children. On the basis of current evidence, LABA are the first choice initial add-on therapy in adults (see sections 7.3.1 and 7.4). In children, options for initial add-on therapy are limited to LABA and LTRA, with evidence to support both individually, but insufficient evidence to support use of one over the other (see section 7.4.2). LABA are not licensed for use in children under four years of age and evidence for use of LTRA in this age group is limited to studies comparing LTRA with ICS or placebo (see section 7.2.7).

The first choice as add-on therapy to inhaled corticosteroids in adults is an inhaled long-acting β₂ agonist, which should be considered before increasing the dose of inhaled corticosteroid.

In children aged five and over, an inhaled long-acting β₂ agonist or a leukotriene receptor antagonist can be considered as initial add-on therapy.

7.3.3 SAFETY OF LONG-ACTING β₂ AGONISTS

Following a review in 2007 of LABA in the treatment of adults, adolescents, and children with asthma, the Medicines and Healthcare products Regulatory Agency (MHRA) further reviewed the use of LABA, specifically in children younger than 12 years of age and concluded that the benefits of these medicines used in conjunction with ICS in the control of asthma symptoms outweigh any apparent risks.

Long-acting inhaled β₂ agonists should only be started in patients who are already on inhaled corticosteroids, and the inhaled corticosteroid should be continued.
7.3.4 COMBINATION INHALED CORTICOSTEROID/LONG-ACTING β₂ AGONIST INHALERS

In efficacy studies, where there is generally good adherence, there is no difference in efficacy in giving ICS and a LABA in combination or in separate inhalers.456

In clinical practice it is generally considered that combination inhalers aid adherence and also have the advantage of guaranteeing that the LABA is not taken without the ICS.

✓ Combination inhalers are recommended to:
 - guarantee that the long-acting β₂ agonist is not taken without inhaled corticosteroid
 - improve inhaler adherence.

7.3.5 MAINTENANCE AND RELIEVER THERAPY

In selected adult patients who are poorly controlled with ICS and LABA or in selected adult patients on medium dose ICS alone, maintenance and reliever therapy combining ICS and LABA in a single inhaler has been shown to be an effective treatment regime.457-461

Two systematic reviews comparing a combined ICS/LABA inhaler as maintenance and reliever therapy with ICS/LABA as maintenance and SABA as reliever, 462 or with ICS alone or with current best practice (ICS with or without LABA)463 have shown that maintenance and reliever therapy can reduce the risk of asthma attacks requiring oral steroids in patients who are not well controlled on ICS alone and who have a history of asthma attacks. The latter review reported more withdrawals due to adverse events in the maintenance and reliever therapy group (possibly because patients did not adjust well to the change in inhaler) compared with the current best practice group, but no significant difference between the groups in serious adverse events.

When this management option is introduced the total regular dose of daily ICS should not be decreased. Patients taking rescue doses of their combination inhaler once a day or more on a regular basis should have their treatment reviewed. Careful education of patients about the specific issues around this management strategy is required.

At present maintenance and reliever therapy is only licensed for use with budesonide/formoterol or beclometasone/formoterol in adults over the age of 18. Not all combination products are licensed for maintenance and reliever therapy. The appropriate combination inhaler should be prescribed by brand name.

A In adults over the age of 18, combined maintenance and reliever therapy can be considered for patients who have a history of asthma attacks on medium dose ICS or ICS/LABA

7.4 ADDITIONAL ADD-ON THERAPIES

If control remains poor on low-dose ICS plus a LABA, recheck the diagnosis, assess adherence to existing medication and check inhaler technique before increasing therapy. If more intense treatment is appropriate, then the following alternatives can be considered.

If there is an improvement when a LABA is added but control remains inadequate:
 - continue the LABA and increase the dose of ICS (see section 7.4.1)
 - continue the LABA and the ICS and add an LTRA or a long acting muscarinic agent (LAMA) or a theophylline (see sections 7.4.2, 7.4.3 and 7.4.4, respectively).
If there is no improvement when a LABA is added, stop the LABA and try:

- an increased dose of ICS (see section 7.4.1)
- an LTRA (see section 7.4.2)
- a LAMA (see section 7.4.3). LAMA are not licensed for this indication.

7.4.1 INCREASED DOSE OF INHALED CORTICOSTEROIDS

If there is a response to LABA, but control remains suboptimal, continue with the LABA and increase the dose of ICS to medium (adults) or low dose (children 5–12 years).\(^\text{456}\)

If, as occasionally happens, there is no response to inhaled long-acting β\(_2\) agonist, stop the LABA and increase the dose of ICS to medium (adults) or low dose (children) if not already on this dose.\(^\text{456}\)

If asthma control remains suboptimal after the addition of an inhaled long-acting β\(_2\) agonist then the dose of inhaled corticosteroids should be increased from low dose to medium dose in adults or from very low dose to low dose in children (5–12 years), if not already on these doses.

7.4.2 LEUKOTRIENE RECEPTOR ANTAGONISTS

Evidence to support the use of leukotriene receptor antagonists (LTRA) as an add-on therapy to ICS plus LABA is lacking and evidence for their use is largely based on extrapolation from trials of LTRA as add-on therapy to ICS alone. The addition of LTRA to ICS may provide improvement in lung function, a decrease in asthma attacks, and an improvement in symptoms in adults and children over five years of age, although reported benefits differ between studies and evidence is limited in children.\(^\text{435,464,465}\)

A systematic review of studies comparing the addition of LTRA to ICS with the addition of LABA to ICS showed that the addition of LABA to ICS was more effective at reducing asthma attacks (the primary outcome) and improving secondary outcomes including SABA use, symptoms and quality of life in adults, although differences were generally small. There was insufficient evidence on which to base conclusions regarding which add-on therapy is more effective in children.\(^\text{453}\)

In adults, the addition of LTRA to ICS is superior to ICS alone and has a similar effect on asthma control to high-dose ICS. High-dose ICS, however, appears superior to ICS-LTRA for some pulmonary function indices, although further studies to investigate this are required.\(^\text{466}\)

7.4.3 TIOTROPIUM BROMIDE

A review of RCTs in adults taking tiotropium bromide, a long-acting muscarinic antagonist (LAMA), in addition to ICS plus LABA compared with ICS plus LABA, reported fewer asthma exacerbations (although results were inconclusive), improved lung function and some benefits relating to asthma control in those taking tiotropium, but no improvement in quality of life. Evidence relating to serious adverse effects was inconclusive but fewer non-serious adverse events were reported in those taking tiotropium. In two of the three trials included in the review patients were taking high-dose ICS, although it was not possible to draw conclusions about the effect of tiotropium in those taking different doses of ICS plus LABA.\(^\text{467}\)
There is insufficient evidence to suggest that addition of tiotropium to ICS in patients inadequately controlled on ICS alone has any benefit over addition of LABA to ICS. The addition of LABA to ICS remains the first choice for add-on treatment in adults. In adults with asthma who do not respond to ICS plus LABA, the addition of tiotropium to ICS is a possible, although ‘off-label’ alternative.

A review comparing the addition of tiotropium to ICS with increased dose of ICS in adults found only one study suitable for inclusion and insufficient evidence to say whether adding tiotropium to ICS (‘off-label’ use) is safer or more effective than increasing the dose of ICS.

7.4.4 OTHER APPROACHES

Theophyllines may improve lung function and symptoms, but side effects occur more commonly.

Slow-release β₂ agonist tablets may also improve lung function and symptoms, but side effects occur more commonly.

Addition of short-acting anticholinergics is generally of no value. Addition of nedocromil is of marginal benefit.

If control remains inadequate after stopping a LABA and increasing the dose of inhaled corticosteroid, consider sequential trials of add-on therapy, ie leukotriene receptor antagonists, theophyllines, slow-release β₂ agonist tablets (in adults only).

7.5 HIGH-DOSE THERAPIES

In a small proportion of patients asthma is not adequately controlled on a combination of short-acting β₂ agonist as required, medium-dose ICS, and an additional drug, usually a LABA. There are very few clinical trials in this specific patient group to guide management.

In adults, the addition of tiotropium to high-dose ICS plus LABA may confer some additional benefit although results are currently inconclusive. Further research is needed to confirm possible benefits or harms of tiotropium in combination with different doses of ICS/LABA. The following recommendations are largely based on extrapolation from trials of add-on therapy to ICS alone.

If control remains inadequate on medium dose (adults) or low dose (children) of an inhaled corticosteroid plus a long-acting β₂ agonist, the following interventions can be considered:

- increase the inhaled corticosteroids to high dose (adults) or medium dose (children 5-12 years)* or
- add a leukotriene receptor antagonist or
- add a theophylline or
- add slow-release β₂ agonist tablets, although caution needs to be used in patients already on long-acting β₂ agonists, or
- add tiotropium (adults).

* at high doses of inhaled corticosteroid via a pressurised metered dose inhaler (pMDI), a spacer should be used.
There are no controlled trials indicating which of these is the best option, although the potential for side effects is greater with theophyllines and β₂ agonist tablets.

- If a trial of an add-on treatment is ineffective, stop the drug (or in the case of increased dose of inhaled corticosteroid, reduce to the original dose).

- Before proceeding to continuous or frequent use of oral steroid therapy, refer patients with inadequately controlled asthma, especially children, to specialist care.

- Although there are no controlled trials, children (all ages) who are under specialist care may benefit from a trial of higher dose ICS (greater than 800 micrograms/day) before moving to use of oral steroids.

7.6 CONTINUOUS OR FREQUENT USE OF ORAL STEROIDS

The aim of treatment is to control asthma using the lowest possible doses of medication.

Some patients with very severe asthma not controlled with high-dose ICS, and who have also been tried on or are still taking long-acting β-agonists, leukotriene antagonists or theophyllines, require regular long-term steroid tablets.

- For the small number of patients not controlled on high-dose therapies, use daily steroid tablets in the lowest dose providing adequate control.

7.6.1 PREVENTION AND TREATMENT OF STEROID TABLET-INDUCED SIDE EFFECTS

Patients on long-term steroid tablets (for example, longer than three months) or requiring frequent courses of steroid tablets (for example three to four per year) will be at risk of systemic side effects.430

- Blood pressure should be monitored
- Urine or blood sugar and cholesterol should be checked: diabetes mellitus and hyperlipidaemia may occur
- Bone mineral density should be monitored in adults. When a significant reduction occurs, treatment with a long-acting bisphosphonate should be offered (further guidance is available from the British Osteoporosis Society, www.nos.org.uk)473
- Bone mineral density should be monitored in children >5 (further advice is available from the American Academy of Pediatrics)474
- Growth (height and weight centile) should be monitored in children
- Cataracts and glaucoma may be screened for through community optometric services.

7.6.2 STEROID FORMULATIONS

Prednisolone is the most widely used steroid for maintenance therapy in patients with chronic asthma. There is no evidence that other steroids offer an advantage.

7.6.3 FREQUENCY OF DOSING OF STEROID TABLETS

Although popular in paediatric practice, there are no studies to show whether alternate day steroids produce fewer side effects than daily steroids. No evidence was identified to guide timing of dose or dose splitting.
Figure 2: Summary of management in adults (see also Table 9)

<table>
<thead>
<tr>
<th>Asthma - suspected</th>
<th>Asthma - diagnosed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis and assessment</td>
<td>Evaluation: • assess symptoms, measure lung function, check inhaler technique and adherence • adjust dose • update self-management plan • move up and down as appropriate</td>
</tr>
</tbody>
</table>

- **Regular preventer**
 - Infrequent, short-lived wheeze
 - Consider monitored initiation of treatment with low-dose ICS
 - Low-dose ICS
 - Add inhaled LABA to low-dose ICS (normally as a combination inhaler)

- **Initial add-on therapy**
 - No response to LABA – stop LABA and consider increased dose of ICS
 - If benefit from LABA but control still inadequate – continue LABA and increase ICS to medium dose

- **Additional add-on therapies**
 - Consider trials of:
 - Increasing ICS up to high dose
 - Addition of a fourth drug, eg LTRA, SR theophylline, beta agonist tablet, LAMA

- **High-dose therapies**
 - Refer patient for specialist care
 - Use daily steroid tablet in the lowest dose providing adequate control
 - Maintain high-dose ICS
 - Consider other treatments to minimize use of steroid tablets

- **Continuous or frequent use of oral steroids**
 - Refer patient for specialist care

- **Short acting β₂ agonists as required** – consider moving up if using three doses a week or more
Figure 3: Summary of management in children (see also Table 10)

Asthma - suspected

- **Diagnosis and assessment**
 - assess symptoms, measure lung function, check inhaler technique and adherence
 - adjust dose, update self-management plan

Asthma - diagnosed

- **Evaluation**:
 - assess symptoms, measure lung function, check inhaler technique and adherence
 - adjust dose
 - update self-management plan
 - move up and down as appropriate

- **Short acting β2 agonists as required**
 - consider moving up if using three doses a week or more

- **Infrequent, short-lived wheeze**
 - move down to find and maintain lowest controlling therapy

- **Continuous or frequent use of oral steroids**
 - refer patient for specialist care
 - use daily steroid tablet in the lowest dose providing adequate control
 - maintain medium-dose ICS

- **High-dose therapies**
 - consider monitored initiation of treatment with very low- to low-dose ICS
 - consider trials of increasing ICS to medium dose
 - consider other treatments to minimize use of steroid tablets

- **Additional add-on therapies**
 - increase ICS up to medium dose
 - add a fourth drug - SR theophylline

- **No response to LABA**
 - consider trials of increasing ICS to higher dose of ICS, to lower dose of ICS
 - continue LABA and increase ICS to low dose

- **Very low (pediatric) dose of ICS**
 - children <5 years - add LTRA
 - children ≥5 years - add inhaled LABA

- **Regular preventer**
 - very low (pediatric) dose of ICS
 - (or LTRA <5 years)

- **Inhaled, short lived wheeze**
 - consider moving up if using three doses a week or more

- **Continue monitoring adherence with very low-to low-dose ICS**
7.7 OTHER MEDICATIONS AND POTENTIAL STEROID TABLET-SPARING TREATMENTS

7.7.1 ANTI-IgE MONOCLONAL ANTIBODY

Omalizumab is a humanised monoclonal antibody which binds to circulating IgE, reducing levels of free serum IgE.475,476 In adults and children over six years of age, it is licensed in the UK with the following indication: patients on high-dose ICS and long-acting β₂ agonists who have impaired lung function, are symptomatic with frequent asthma attacks, and have allergy as an important cause of their asthma. Omalizumab is given as a subcutaneous injection every two or four weeks depending on the patient’s IgE level and weight. The total IgE must be <1,300 international units (IU)/ml for children over six years of age.477 In adults and children >12 years, the licensed indication is an IgE up to 1,500 IU/ml but there is no published data to support its efficacy and safety above 700 IU/ml.

Local skin reactions may occur. Anaphylaxis, presenting as bronchospasm, hypotension, syncope, urticaria, and/or angioedema of the throat or tongue has been reported after administration of omalizumab occurring as early as the first dose, and as late as one year. Due to risk of anaphylaxis, omalizumab should only be administered to patients in a healthcare setting under direct medical supervision.

Omalizumab given by subcutaneous injection can reduce the steroid burden for the patient without increasing the risk of adverse events.478-480 Three systematic reviews reported reductions in asthma exacerbations in patients with moderate or severe allergic asthma receiving omalizumab compared with placebo in addition to oral corticosteroids (OCS) or ICS.478-480 These studies all reported that more patients on omalizumab compared with placebo withdrew steroids (OCS, 478 ICS but not OCS, 479 unclear if OCS or ICS or both480).

B Omalizumab given by subcutaneous injection may be considered in patients with a high steroid burden.

Omalizumab treatment should only be initiated in specialist centres with experience of evaluation and management of patients with severe and difficult asthma.

7.7.2 ANTI-INTERLEUKIN-5 MONOCLONAL ANTIBODY

A systematic review of mepolizumab compared with placebo reported some improvement in health-related quality of life and reductions in exacerbations in adults and adolescents (≥12 years) with severe eosinophilic asthma, but concluded that further studies were needed to establish dosage, dosing regimens and duration of treatment.481 Seven of the eight studies included in the review used an unlicensed intravenous route of administration, thus limiting the usefulness of the findings.

An RCT including 135 patients with severe eosinophilic asthma receiving 100 mg of mepolizumab subcutaneously every four weeks reported a significant glucocorticoid-sparing effect with mepolizumab compared with placebo (28% vs 11%, respectively), improved secondary outcomes including fewer exacerbations and improved ACQ-5 scores, and a similar safety profile.482
7.7.3 OTHER AGENTS

Immunosuppressants (methotrexate, ciclosporin and oral gold) decrease long term steroid tablet requirements, but all have significant side effects. There is no evidence of persisting beneficial effect after stopping them; and there is marked variability in response.483

Immunosuppressants (methotrexate, ciclosporin and oral gold) may be given as a three month trial, once other drug treatments have proved unsuccessful. Their risks and benefits should be discussed with the patient and their treatment effects carefully monitored. Treatment should be in a centre with experience of using these medicines.

Colchicine and intravenous immunoglobulin have not been shown to have any beneficial effect in adults.483

Continuous subcutaneous terbutaline infusion has been reported to be beneficial in patients with severe asthma but efficacy and safety have not been assessed in RCTs.484-486

Anti-tumour necrosis factor alpha (anti-TNF alpha) therapy has been investigated in patients with severe asthma but these studies are too small and too short term to allow recommendation of anti-TNF alpha therapy outside the context of a controlled clinical trial.487,488

A systematic review of the use of macrolides in patients with chronic asthma concluded that they confer no benefit over placebo in terms of clinical outcomes. There was some evidence of possible benefit in improved lung function but concern about the risk of increased antimicrobial resistance. Subgroup analyses in two of the included studies suggested improved outcomes in patients with non-eosinophilic asthma, but patient numbers were small and no conclusions can be drawn from the data available.489 There is insufficient evidence to support the addition of macrolides to existing treatment for patients with severe asthma.

7.7.4 PATIENTS ON ORAL STEROIDS NOT PREVIOUSLY TRIED ON INHALED THERAPY

For patients who are on long-term steroid tablets and have not been tried on adequate doses of inhaled medication an aim is to control the asthma using the lowest possible dose of oral steroid or, if possible, to stop long-term steroid tablets completely.

Inhaled corticosteroids are the most effective drug for decreasing requirement for long-term steroid tablets.399,400

There is limited evidence for the ability of long-acting β₂ agonists, theophyllines, or leukotriene receptor antagonists to decrease requirement for steroid tablets, but they may improve symptoms and pulmonary function.480

In adults, the recommended method of eliminating or reducing the dose of steroid tablets is high-dose inhaled corticosteroids.

In children aged 5–12, consider very carefully before going above a medium dose inhaled corticosteroid.

There is a role for a trial of treatment with long-acting β₂ agonists, leukotriene receptor antagonists, and theophyllines for about six weeks. They should be stopped if no improvement in steroid dose, symptoms or lung function is detected.
7.8 IMMUNOTHERAPY FOR ASTHMA

Studies using both subcutaneous and sublingual allergen immunotherapy (SCIT and SLIT) have shown some benefit in reducing asthma symptoms and bronchial hyper-reactivity (BHR) in children and adults currently on a range of other preventative strategies including ICS. There are, however, few studies comparing immunotherapy with ICS or of adding immunotherapy to ICS so there is difficulty precisely defining where in asthma management this approach should sit.

7.8.1 SUBCUTANEOUS IMMUNOTHERAPY

Trials of allergen specific immunotherapy by subcutaneous injection of increasing doses of allergen extracts have consistently demonstrated beneficial effects compared with placebo in the management of allergic asthma. Allergens included house dust mite, grass pollen, tree pollen, cat and dog allergen and moulds. Cochrane reviews have concluded that immunotherapy reduces asthma symptoms, the use of asthma medications and improves bronchial hyper-reactivity. The most recent review included 42 trials with house dust mite, 27 with pollen, 10 with animal allergens, two with *Cladosporium* mould, two with latex and six with multiple allergens.491

The effect of immunotherapy is difficult to quantify due to the use of different symptom scores and variation in the way outcomes are reported. Reductions in asthma medication use and a small symptomatic benefit have been reported but there are significant side effects including 1 in 16 patients reporting a local adverse reaction and 11% reporting a systemic adverse reaction defined as anaphylaxis, asthma, rhinitis, urticaria or a combination of these.491 Immunotherapy is not licensed for the treatment of asthma; the current licence is for grass pollen induced allergic rhinitis.

One study directly compared allergen immunotherapy with ICS and found that symptoms and lung function improved more rapidly in the group on ICS.492

Immunotherapy for allergic rhinitis has been shown to have a carry over effect after therapy has stopped.493

The use of subcutaneous immunotherapy is not recommended for the treatment of asthma in adults or children.

7.8.2 SUBLINGUAL IMMUNOTHERAPY

There has been increasing interest in the use of sublingual immunotherapy, which is associated with far fewer adverse reactions than subcutaneous immunotherapy. A systematic review reported that although there appeared to be some benefits in terms of asthma control, the magnitude of the effect was small and was based on mixed results for allergic symptoms overall (including asthma, rhinitis and conjunctivitis).494 The review showed no significant effect on asthma symptoms or asthma medication use but did show a significant increase in side effects.

A systematic review of five earlier meta-analyses, including 43 studies, 17 of which were included in more than one meta-analysis, highlighted a number of problems relating to earlier meta-analyses, including possible misinterpretation of study findings and publication bias.495

A meta-analysis of SLIT for house dust mites, reported a significant reduction in symptoms and medication required in children, although differences in reporting of symptoms scores mean it is not possible to determine the magnitude of the effect.496
The analysis included only one study in adults which showed no effect on symptoms or medication use.

Sublingual immunotherapy is not licensed for use in the treatment of asthma.

Sublingual immunotherapy cannot currently be recommended for the treatment of asthma in routine practice in children or adults.

7.9 BRONCHIAL THERMOPLASTY

In selected adult patients with moderate to severe asthma (aged 18–65 years) who have poorly controlled asthma despite maximal therapy, bronchial thermoplasty treatment has been shown to reduce the frequency of severe asthma attacks, emergency department visits and days lost from school or work in the year after treatment.\(^\text{497}\)

Emergency department visits, but not severe asthma attacks, are reduced in the period from first treatment to one year post-treatment.\(^\text{497}\) The reduction in the frequency of asthma attacks and emergency department visits may persist for up to five years after treatment.\(^\text{498}\)

Bronchial thermoplasty results in a modest improvement in asthma quality of life in the year after treatment.\(^\text{499}\)

Bronchial thermoplasty produces no consistent improvement in asthma symptoms or FEV\(_1\),\(^\text{497,500,501}\) and at best a very small increase in PEF.

Bronchial thermoplasty results in increases in asthma-related symptoms and hospital admissions during the treatment period.\(^\text{499}\) Despite this, there is no overall increase in hospital admissions with bronchial thermoplasty at one year.\(^\text{499}\)

There is some evidence for the long-term safety of the procedure from one up to five years post-treatment in relation to adverse events reporting, stable lung function and lack of increase in hospital admissions and emergency room visits.\(^\text{498,502}\)

A Bronchial thermoplasty may be considered for the treatment of adult patients who have poorly controlled asthma despite optimal therapy.

✓ Assessment and treatment for bronchial thermoplasty should be undertaken in centres that have expertise in the assessment of difficult to control asthma and in fibreoptic bronchoscopic procedures.

✓ The balance of risks and benefits of bronchial thermoplasty treatment should be discussed with patients being considered for the procedure.

✓ Longer-term follow up of treated patients is recommended.

✓ Further research is recommended into factors that identify patients who will or will not benefit from bronchial thermoplasty treatment.

7.10 DECREASING TREATMENT

Decreasing therapy once asthma is controlled is recommended, but often not implemented leaving some patients overtreated. There are few studies that have investigated the most appropriate way to decrease treatment. A study in adults on high dose ICS has shown that for patients who are stable it is reasonable to attempt to halve the dose of ICS every three months.\(^\text{488}\)
Some children with milder asthma and a clear seasonal pattern to their symptoms may have a more rapid dose reduction during their ‘good’ season.

- Regular review of patients as treatment is decreased is important. When deciding which drug to decrease first and at what rate, the severity of asthma, the side effects of the treatment, time on current dose, the beneficial effect achieved, and the patient’s preference should all be taken into account.

- Patients should be maintained at the lowest possible dose of inhaled corticosteroid. Reduction in inhaled corticosteroid dose should be slow as patients deteriorate at different rates. Reductions should be considered every three months, decreasing the dose by approximately 25–50% each time.

7.11 SPECIFIC MANAGEMENT ISSUES

7.11.1 ASTHMA ATTACKS

Although recommended for both adults and children in previous guidelines and as part of asthma action plans, doubling the dose of ICS at the time of an exacerbation is of unproven value. In adult patients on a very low dose of ICS, a fivefold increase in dose at the time of an asthma attack leads to a decrease in the severity of asthma attacks. This study cannot be extrapolated to patients already taking higher doses of ICS and further evidence in this area is required (see Tables 9 and 10).

A Cochrane review including five trials in 1,222 adults and 28 children (three in adults >15 years; one including adolescents >13 years; and one including children 6–14 years), showed that doubling the dose of ICS in patients on high dose ICS, was of unproven benefit in reducing rescue oral corticosteroids.

There is some limited evidence that leukotriene antagonists may be used intermittently in children with episodic asthma. Treatment is started at the onset of either asthma symptoms or of coryzal symptoms and continued for seven days.

7.11.2 EXERCISE INDUCED ASTHMA

The following medicines have been shown to give protection against exercise induced asthma:

- inhaled corticosteroids
- short-acting β₂ agonists
- long-acting β₂ agonists
- theophyllines
- leukotriene receptor antagonists
- sodium cromoglicate or nedocromil sodium
- β₂ agonist tablets

The following medicines do not give protection against exercise induced asthma at normal doses

- anticholinergics
- ketotifen
- antihistamine
Long-acting β_2 agonists and leukotriene antagonists provide more prolonged protection than short-acting β_2 agonists, but a degree of tolerance develops with LABA particularly with respect to duration of action. No tolerance has been demonstrated with leukotriene receptor antagonists.508,510,516

For most patients, exercise-induced asthma is an expression of poorly-controlled asthma and regular treatment including inhaled corticosteroids should be reviewed.

If exercise is a specific problem in patients taking inhaled corticosteroids who are otherwise well controlled, consider adding one of the following therapies:

- leukotriene receptor antagonists
- long-acting β_2 agonists
- sodium cromoglicate or nedocromil sodium
- oral β_2 agonists
- theophyllines.

Immediately prior to exercise, inhaled short-acting β_2 agonists are the drug of choice.3,507

7.11.3 COMORBID RHINITIS

Patients with asthma often have rhinitis. The most effective therapy for rhinitis is intranasal steroids.517,518 Treatment of allergic rhinitis with intranasal steroids has not been shown, in double blind placebo-controlled trials, to improve asthma control.

7.11.4 ALLERGIC BRONCOPULMONARY ASPERGILLOSIS

In adult patients with allergic bronchopulmonary aspergillosis, itraconazole may decrease steroid tablet dose and improve asthma control.519,520

Careful monitoring for side effects, particularly hepatic, is recommended.

7.11.5 ASPIRIN-INTOLERANT ASTHMA

There are theoretical reasons to suggest that leukotriene receptor antagonists might be of particular value in the treatment of aspirin-intolerant asthma. However, there is little evidence to justify managing patients with aspirin-intolerant asthma in a different manner to other patients with asthma, apart from the rigorous avoidance of non-steroidal anti-inflammatory medications.521
7.11.6 COMORBID GASTRO-OESOPHAGEAL REFLUX

A Cochrane review of twelve double blind controlled trials found that treatment of gastro-oesophageal reflux (GORD) had no benefit on asthma symptoms or lung function when both conditions were present. Reduction in dry cough was observed although this was probably not due to improved asthma control.522,523

A systematic review identified a single RCT which found that proton pump inhibitors did not improve asthma symptoms in children with GORD.524

A further systematic review, including 11 trials and 2,524 patients who had received at least four weeks of daily therapy with proton pump inhibitors found a small but statistically significant improvement in morning peak expiratory flow (8.86 l/min, 95% CI 2.35 to 15.02) in study participants compared to controls, but no differences in asthma symptom score, Asthma Quality of Life Questionnaire score, evening PEF, FEV1, and adverse events. The review concluded that there was insufficient evidence to support the routine use of proton pump inhibitors in the treatment of asthma.525

7.11.7 β-BLOCKERS

β-blockers, including eye drops, are contraindicated in patients with asthma (see BNF for current guidance).5
8 Inhaler devices

Although studies of inhaler devices are more suitable for an evidence-based approach than many other aspects of asthma management, a number of methodological issues complicate evidence review in this area. In young (0–5 years) children, little or no evidence is available on which to base recommendations.

8.1 TECHNIQUE AND TRAINING

Studies of technique and the effects of training have used arbitrary non-standardised scores making comparison difficult. Although technique will have some bearing, it does not necessarily relate to clinical effectiveness.

The proportion of patients making no mistakes with an inhaler in one well-conducted study was 23–43% for pressurised metered dose inhaler (pMDI), 53–59% for dry powder inhaler (DPI) and 55–57% for pMDI + spacer. When technique was assessed as number of steps correct out of the total number of steps, pMDI + spacer was slightly better than DPI.526

Teaching technique improved the correct usage score from a mean of 60% to 79%. Figures for no mistakes after teaching were 63% for pMDI, 65% for DPI, and 75% for breath-actuated MDI (the latter figure based on one study of 2,467 patients).526

Prescribe inhalers only after patients have received training in the use of the device and have demonstrated satisfactory technique.

8.2 β₂ AGONIST DELIVERY

8.2.1 ACUTE ASTHMA

A pMDI + spacer is at least as good as a nebuliser at treating mild and moderate asthma attacks in children and adults.527-530

Children and adults with mild and moderate asthma attacks should be treated with a pMDI + spacer with doses titrated according to clinical response.

There are no data on which to make recommendations in acute severe or life-threatening asthma.

8.2.2 STABLE ASTHMA

For children aged 0–5, there is no evidence comparing nebulisers and other inhalers and the data are insufficiently extensive or robust to draw conclusions for pMDI compared to DPI.

In children aged 5–12 there is no significant difference between a pMDI + spacer and a DPI. In adults there is no significant difference between a pMDI ± spacer and a DPI. The lower pulse rate with a pMDI compared to a Turbohaler is the only difference with regard to side effects. Patients have been shown to prefer a Turbohaler to a pMDI.526,531,532
In children aged 5–12, a pMDI + spacer is as effective as any other hand-held inhaler.

In adults, a pMDI ± spacer is as effective as any other hand-held inhaler, but patients may prefer some types of DPI.

There are no data to make recommendations for children under five years old.

Choice of reliever inhaler for stable asthma should be based on patient preference and assessment of correct use. Many patients will not be prepared to carry a spacer.

8.3 INHALED CORTICOSTEROID FOR STABLE ASTHMA

No comparative data on ICS for stable asthma in children under five years old were identified.

For the delivery of ICS in children aged 5–12 years with stable asthma, a pMDI is as effective as a Clickhaler.\(^{533,534}\) No significant clinical difference was found between a pMDI and a Turbohaler at half the dose for the same drug (budesonide).\(^{526,533}\) This comparison cannot necessarily be made against other ICS/device combinations.

In adults, there is no clinical difference in effectiveness of a pMDI ± spacer compared to a DPI. A breath-actuated MDI is as effective as a pMDI. More recent DPIs are as effective as older DPIs.\(^{439}\) Nebulisers have not been shown to be superior to pMDIs + spacer for delivery of ICS in patients with chronic asthma. A specialised specific nebuliser may provide improved lung function and reduced rescue therapy use, but at high prescribed doses. Higher doses (>2 mg) are generally only licensed for use from a nebuliser.\(^{526,535}\)

In children aged 5–12, a pMDI + spacer is as effective as any other hand-held inhaler.

In adults, a pMDI ± spacer is as effective as any DPI.

No recommendation can be given for nebulised therapy in children aged 5–12 years and there is no evidence relating to children aged under 5 years old.

8.4 PRESCRIBING DEVICES

There is no evidence to dictate an order in which devices should be tested for those patients who cannot use a pMDI. In the absence of evidence, the most important points to consider are patient preference and local cost.

- The choice of device may be determined by the choice of drug.
- If the patient is unable to use a device satisfactorily an alternative should be found.
- The patient should have their ability to use the prescribed inhaler device (particularly for any change in device) assessed by a competent healthcare professional (see section 8.1).
- The medication needs to be titrated against clinical response to ensure optimum efficacy.
- Reassess inhaler technique as part of structured clinical review (see section 14.3).
Generic prescribing of inhalers should be avoided as this might lead to people with asthma being given an unfamiliar inhaler device which they are not able to use properly.

In children, a pMDI and spacer are the preferred method of delivery of β₂ agonists and inhaled corticosteroids. A face mask is required until the child can breathe reproducibly using the spacer mouthpiece. Where this is ineffective a nebuliser may be required.

No prospective controlled trials were found that compared using different devices for preventer and reliever treatments with using the same device for both treatments. Two cross-sectional studies found an association between increased errors in the use of inhalers when different types of inhaler were used (see section 7.3.4).³³⁶,³³⁷

Prescribing mixed inhaler types may cause confusion and lead to increased errors in use. Using the same type of device to deliver preventer and reliever treatments may improve outcomes.

8.5 USE AND CARE OF SPACERS

- The spacer should be compatible with the pMDI being used. A change in spacer may alter effective dose delivered.
- The drug should be administered by repeated single actuations of the metered dose inhaler into the spacer, each followed by inhalation.
- There should be minimal delay between pMDI actuation and inhalation.
- Tidal breathing is as effective as single breaths.
- Spacers should be cleaned monthly rather than weekly as per manufacturer’s recommendations or performance is adversely affected. They should be washed in detergent and allowed to dry in air. The mouthpiece should be wiped clean of detergent before use.
- Drug delivery via a spacer may vary significantly due to static charge. Metal and other antistatic spacers are not affected in this way.
- Plastic spacers should be replaced at least every 12 months but some may need changing at six months.
Management of acute asthma

9.1 LESSONS FROM ASTHMA DEATHS AND NEAR-FATAL ASTHMA

Confidential enquiries into over 200 asthma deaths in the UK conclude there are factors associated with the disease, the medical management and the patient’s behaviour or psychosocial status which contribute to death. Most deaths occurred before admission to hospital. The report of the UK-wide National Review of Asthma Deaths (NRAD) in 2014 reiterates many of the findings from earlier studies.

9.1.1 DISEASE FACTORS

Most patients who died of asthma had chronically severe asthma. In a minority the fatal attack occurred suddenly in a patient with mild or moderately severe background disease.

9.1.2 MEDICAL MANAGEMENT

Many of the deaths occurred in patients who had received inadequate treatment with ICS or steroid tablets and/or inadequate objective monitoring of their asthma. Follow up was inadequate in some and others should have been referred earlier for specialist advice. There was widespread underuse of written management plans. Heavy or increasing use of β₂ agonist therapy was associated with asthma death. The NRAD report recommended that prescription of more than 12 SABA inhalers a year should prompt review of a patient’s management.

Deaths continue to be reported following inappropriate prescription of β-blockers and non-steroidal anti-inflammatory drugs; all asthma patients should be asked about past reactions to these agents (see sections 7.11.5 and 7.11.7).

Patients with an acute asthma attack should not be sedated unless this is to allow anaesthetic or intensive care procedures (see section 9.3.12).

The NRAD report highlighted that there is an increased risk of death within one month of discharge from hospital following an acute attack and that follow up in primary care is therefore essential (see section 9.6).

9.1.3 ADVERSE PSYCHOSOCIAL AND BEHAVIOURAL FACTORS

Behavioural and adverse psychosocial factors were recorded in the majority of patients who died of asthma. Compared with control patients admitted to hospital with asthma, those who died were significantly more likely to have learning difficulties, psychosis or prescribed antipsychotic drugs, financial or employment problems, repeatedly failed to attend appointments or discharged themselves from hospital, drug or alcohol abuse, obesity or a previous near-fatal attack.

Compared with control patients with asthma in the community, patients who died had more severe disease, more likelihood of a hospital admission or visit to the ED for their asthma in the previous year, more likelihood of a previous near-fatal attack, poor medical management, failure to measure pulmonary function, and non-adherence.

Healthcare professionals must be aware that patients with severe asthma and one or more adverse psychosocial factors are at risk of death.
Table 11: Patients at risk of developing near-fatal or fatal asthma538-542,545,546

<table>
<thead>
<tr>
<th>A combination of severe asthma recognised by one or more of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• previous near-fatal asthma, eg previous ventilation or respiratory acidosis</td>
</tr>
<tr>
<td>• previous admission for asthma especially if in the last year</td>
</tr>
<tr>
<td>• requiring three or more classes of asthma medication</td>
</tr>
<tr>
<td>• heavy use of β\textsubscript{2} agonist</td>
</tr>
<tr>
<td>• repeated attendances at ED for asthma care especially if in the last year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AND adverse behavioural or psychosocial features recognised by one or more of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• non-adherence with treatment or monitoring</td>
</tr>
<tr>
<td>• failure to attend appointments</td>
</tr>
<tr>
<td>• fewer GP contacts</td>
</tr>
<tr>
<td>• frequent home visits</td>
</tr>
<tr>
<td>• self discharge from hospital</td>
</tr>
<tr>
<td>• psychosis, depression, other psychiatric illness or deliberate self harm</td>
</tr>
<tr>
<td>• current or recent major tranquilliser use</td>
</tr>
<tr>
<td>• denial</td>
</tr>
<tr>
<td>• alcohol or drug abuse</td>
</tr>
<tr>
<td>• obesity</td>
</tr>
<tr>
<td>• learning difficulties</td>
</tr>
<tr>
<td>• employment problems</td>
</tr>
<tr>
<td>• income problems</td>
</tr>
<tr>
<td>• social isolation</td>
</tr>
<tr>
<td>• childhood abuse</td>
</tr>
<tr>
<td>• severe domestic, marital or legal stress</td>
</tr>
</tbody>
</table>

Studies comparing near-fatal asthma with deaths from asthma have concluded that patients with near-fatal asthma have identical adverse factors to those described in Table 11, and that these contribute to the near-fatal asthma attack.549-551 Compared with patients who die, those with near-fatal asthma are significantly younger, are significantly more likely to have had a previous near-fatal asthma attack, are less likely to have concurrent medical conditions, are less likely to experience delay in receiving medical care, and more likely to have ready access to acute medical care.

With near-fatal asthma it is advisable to involve a close relative when discussing future management.

Patients with difficult asthma should also be identified (see section 10.1).

- Keep patients who have had a near-fatal asthma attack under specialist supervision indefinitely.

9.1.4 SEASONAL FACTORS

In the UK there is a peak of asthma deaths in young people aged up to 44 years in July and August and in December and January in older people.549,552
9.1.5 PREDICTION AND PREVENTION OF A SEVERE ASTHMA ATTACK

Most attacks of asthma severe enough to require hospital admission develop relatively slowly over a period of six hours or more. In one study, over 80% developed over more than 48 hours.553-558 There is therefore time for effective action to reduce the number of attacks requiring hospitalisation. There are many similarities between patients who die from asthma, patients with near-fatal asthma and control patients with asthma who are admitted to hospital.

A respiratory specialist should follow up patients admitted with a severe asthma attack for at least one year after the admission.

9.2 ACUTE ASTHMA IN ADULTS

Annexes 2–4 contain algorithms summarising the recommended treatment for patients presenting with moderate, acute severe or life-threatening asthma in primary care (see Annex 2), the ED (see Annex 3), and hospital (see Annex 4).

9.2.1 RECOGNITION OF ACUTE ASTHMA

Definitions of increasing levels of severity of acute asthma attacks are provided in Table 12.559-564 Predicted PEF values should be used only if the recent best PEF (within two years) is unknown.565

9.2.2 SELF TREATMENT BY PATIENTS DEVELOPING ACUTE OR UNCONTROLLED ASTHMA

Patients with asthma, and all patients with severe asthma, should have an agreed written PAAP and their own peak flow meter, with regular checks of inhaler technique and adherence. They should know when and how to increase their medication and when to seek medical assistance. Written PAAPs can decrease hospitalisation for,148 and deaths from asthma (see section 5.3.2).566

9.2.3 INITIAL ASSESSMENT

All possible initial contact personnel, for example practice receptionists, ambulance call takers, NHS 111 (England and Wales), NHS 24 (Scotland), and out-of-hours providers, should be aware that asthma patients complaining of respiratory symptoms may be at risk and should have immediate access to a doctor or trained asthma nurse. The assessments required to determine whether the patient is suffering from an acute attack of asthma, the severity of the attack and the nature of treatment required are detailed in Tables 12 and 13. It may be helpful to use a systematic recording process. Proformas have proved useful in the ED setting.567
Table 12: Levels of severity of acute asthma attacks in adults

<table>
<thead>
<tr>
<th>Level of Severity</th>
<th>Criteria</th>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate acute asthma</td>
<td>Increasing symptoms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PEF >50–75% best or predicted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No features of acute severe asthma</td>
<td></td>
</tr>
<tr>
<td>Acute severe asthma</td>
<td>Any one of:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- PEF 33–50% best or predicted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- respiratory rate ≥25/min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- heart rate ≥110/min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- inability to complete sentences in one breath</td>
<td></td>
</tr>
<tr>
<td>Life-threatening asthma</td>
<td>Any one of the following in a patient with severe asthma:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Altered conscious level</td>
<td>PEF <33% best or predicted</td>
</tr>
<tr>
<td></td>
<td>- Exhaustion</td>
<td>SpO₂ <92%</td>
</tr>
<tr>
<td></td>
<td>- Arrhythmia</td>
<td>PaO₂ <8 kPa</td>
</tr>
<tr>
<td></td>
<td>- Hypotension</td>
<td>‘normal’ PaCO₂ (4.6–6.0 kPa)</td>
</tr>
<tr>
<td></td>
<td>- Cyanosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Silent chest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Poor respiratory effort</td>
<td></td>
</tr>
<tr>
<td>Near-fatal asthma</td>
<td>Raised PaCO₂ and/or requiring mechanical ventilation with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>raised inflation pressures</td>
<td></td>
</tr>
</tbody>
</table>

SpO₂: oxygen saturation measured by a pulse oximeter
PaO₂: partial arterial pressure of oxygen
kPa: kilopascals
PaCO₂: partial arterial pressure of carbon dioxide

9.2.4 PREVENTION OF ACUTE DETERIORATION

A register of patients at risk may help healthcare professionals in primary care to identify patients who are more likely to die from their asthma. A system should be in place to ensure that these patients are contacted if they fail to attend for follow up.

9.2.5 CRITERIA FOR REFERRAL

Refer to hospital any patients with features of acute severe or life-threatening asthma.

Other factors, such as failure to respond to treatment, social circumstances or concomitant disease, may warrant hospital referral.
Table 13: Initial assessment of symptoms, signs and measurements

<table>
<thead>
<tr>
<th>Clinical features</th>
<th>Clinical features can identify some patients with severe asthma, e.g. severe breathlessness (including too breathless to complete sentences in one breath), tachypnoea, tachycardia, silent chest, cyanosis, accessory muscle use, altered consciousness or collapse.(^{559-564,568}) None of these singly or together is specific. Their absence does not exclude a severe attack.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEF or FEV(_1)</td>
<td>Measurements of airway calibre improve recognition of the degree of severity, the appropriateness or intensity of therapy, and decisions about management in hospital or at home.(^{569,570}) PEF or FEV(_1) are useful and valid measures of airway calibre. PEF is more convenient in the acute situation. PEF expressed as a percentage of the patient’s previous best value is most useful clinically. PEF as a percentage of predicted gives a rough guide in the absence of a known previous best value. Different peak flow meters give different readings. Where possible the same or similar type of peak flow meter should be used.</td>
</tr>
<tr>
<td>Pulse oximetry</td>
<td>Measure oxygen saturation (SpO(_2)) with a pulse oximeter to determine the adequacy of oxygen therapy and the need for arterial blood gas (ABG) measurement. The aim of oxygen therapy is to maintain SpO(_2) 94–98%.(^{571})</td>
</tr>
<tr>
<td>Blood gases (ABG)</td>
<td>Patients with SpO(_2) <92% (irrespective of whether the patient is on air or oxygen) or other features of life-threatening asthma require ABG measurement.(^{559-562,564,572}) SpO(_2) <92% is associated with a risk of hypercapnia. Hypercapnia is not detected by pulse oximetry.(^{572}) In contrast, the risk of hypercapnia with SpO(_2) >92% is much less.(^{571})</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>Chest X-ray is not routinely recommended in patients in the absence of: - suspected pneumomediastinum or pneumothorax - suspected consolidation - life-threatening asthma - failure to respond to treatment satisfactorily - requirement for ventilation.</td>
</tr>
<tr>
<td>Systolic paradox</td>
<td>Systolic paradox (pulsus paradoxus) is an inadequate indicator of the severity of an attack and should not be used.(^{559-564,573})</td>
</tr>
</tbody>
</table>
9.2.6 CRITERIA FOR ADMISSION

Adult patients with any feature of a life-threatening or near-fatal asthma attack or a severe asthma attack that does not resolve after initial treatment should be admitted to hospital. Admission may also be appropriate when peak flow has improved to greater than 75% best or predicted one hour after initial treatment but concerns remain about symptoms, previous history or psychosocial issues (see sections 9.1 and 9.2).549,551,559-564

B Admit patients with any feature of a life-threatening or near-fatal asthma attack.

B Admit patients with any feature of a severe asthma attack persisting after initial treatment.

C Patients whose peak flow is greater than 75% best or predicted one hour after initial treatment may be discharged from ED unless they meet any of the following criteria, when admission may be appropriate:

- still have significant symptoms
- concerns about adherence
- living alone/socially isolated
- psychological problems
- physical disability or learning difficulties
- previous near-fatal asthma attack
- asthma attack despite adequate dose steroid tablets prior to presentation
- presentation at night
- pregnancy.

9.3 TREATMENT OF ACUTE ASTHMA IN ADULTS

9.3.1 OXYGEN

Many patients with acute severe asthma are hypoxaemic.574-577 Supplementary oxygen should be given urgently to hypoxaemic patients, using a face mask, Venturi mask or nasal cannulae with flow rates adjusted as necessary to maintain SpO₂ of 94–98%,571 taking care to avoid overoxygenation which may be detrimental.578

Emergency oxygen should be available in hospitals, ambulances and primary care. Hypercapnia indicates the development of near-fatal asthma and the need for emergency specialist/anaesthetic intervention. In this situation care should be taken to avoid hypoxia as well as overoxygenation.

C Give controlled supplementary oxygen to all hypoxaemic patients with acute severe asthma titrated to maintain an SpO₂ level of 94–98%. Do not delay oxygen administration in the absence of pulse oximetry but commence monitoring of SaO₂ as soon as it becomes available.
9.3.2 β₂ AGONIST BRONCHODILATORS

In most cases inhaled β₂ agonists given in high doses act quickly to relieve bronchospasm with few side effects.⁵⁷⁹-⁵⁸¹ There is no evidence for any difference in efficacy between salbutamol and terbutaline. Nebulised adrenaline (epinephrine), a non-selective β₂ agonist, does not have significant benefit over salbutamol or terbutaline.⁵⁸²

In patients with acute asthma without life-threatening features, β₂ agonists can be administered by repeated activations of a pMDI via an appropriate large volume spacer or by wet nebulisation driven by oxygen, if available.⁵⁸³ Inhaled β₂ agonists are as efficacious and preferable to intravenous β₂ agonists (meta-analysis has excluded subcutaneous trials) in adult acute asthma in the majority of cases.⁵⁸⁴ If intravenous β₂ agonists are used, consider monitoring serum lactate.⁵⁸⁵

Metered dose inhalers with spacers can be used for patients with asthma attacks other than life threatening.⁵⁸³

A Use high-dose inhaled β₂ agonists as first-line agents in patients with acute asthma and administer as early as possible. Reserve intravenous β₂ agonists for those patients in whom inhaled therapy cannot be used reliably.

✓ If intravenous β₂ agonists are used, consider monitoring serum lactate to monitor for toxicity.

Oxygen-driven nebulisers are preferred for nebulising β₂ agonist bronchodilators because of the risk of oxygen desaturation while using air-driven compressors.⁵²⁷,⁵⁵⁹,⁵⁸⁶

A A flow rate of 6 l/min is required to drive most nebulisers. Where oxygen cylinders are used, a high flow regulator must be fitted.⁵⁷¹

The absence of supplemental oxygen should not prevent nebulised therapy from being administered when appropriate.⁵⁸⁷

A In hospital, ambulance and primary care, nebulisers for giving nebulised β₂ agonist bronchodilators should preferably be driven by oxygen.

✓ In patients with acute asthma with life-threatening features the nebulised route (oxygen-driven) is recommended.

Parenteral β₂ agonists, in addition to inhaled β₂ agonists, may have a role in ventilated patients or those in extremis, however there is limited evidence to support this.

Most acute asthma attacks will respond adequately to bolus nebulisation of β₂ agonists. Continuous nebulisation of β₂ agonists with an appropriate nebuliser may be more effective than bolus nebulisation in relieving acute asthma for patients with a poor response to initial therapy.⁵⁸⁸-⁵⁹¹

A In patients with severe asthma that is poorly responsive to an initial bolus dose of β₂ agonist, consider continuous nebulisation with an appropriate nebuliser.

Repeat doses of β₂ agonists at 15–30 minute intervals or give continuous nebulisation of salbutamol at 5–10 mg/hour (requires the appropriate nebuliser) if there is an inadequate response to initial treatment. Higher bolus doses, for example 10 mg of salbutamol, are unlikely to be more effective.
9.3.3 STEROID THERAPY

Steroids reduce mortality, relapses, subsequent hospital admission and requirement for β₂ agonist therapy. The earlier they are given in the acute attack the better the outcome.⁵⁹²,⁵⁹³

A Give steroids in adequate doses to all patients with an acute asthma attack.

Steroid tablets are as effective as injected steroids, provided they can be swallowed and retained.⁵⁹² Prednisolone 40–50 mg daily or parenteral hydrocortisone 400 mg daily (100 mg six-hourly) are as effective as higher doses.⁵⁹⁴ Where necessary soluble prednisolone (sodium phosphate) 5 mg tablets are available. In cases where oral treatment may be a problem consider intramuscular methylprednisolone (160 mg) as an alternative to a course of oral prednisolone.⁵⁹⁵

✓ Continue prednisolone (40–50 mg daily) for at least five days or until recovery.

Following recovery from the acute asthma attack steroids can be stopped abruptly. Doses do not need tapering provided the patient receives ICS (apart from patients on maintenance steroid treatment or rare instances where steroids are required for three or more weeks).⁵⁹⁶,⁵⁹⁷

It is not known if ICS provide further benefit in addition to systemic steroids.⁵⁹⁸,⁵⁹⁹

✓ Do not stop inhaled corticosteroids during prescription of oral corticosteroids.

9.3.4 IPRATROPIUM BROMIDE

Combining nebulised ipratropium bromide with a nebulised β₂ agonist produces significantly greater bronchodilation than β₂ agonist alone, leading to faster recovery and shorter duration of admission. Anticholinergic treatment is not necessary and may not be beneficial in milder asthma attacks or after stabilisation.⁶⁰⁰-⁶⁰²

B Add nebulised ipratropium bromide (0.5 mg 4–6 hourly) to β₂ agonist treatment for patients with acute severe or life-threatening asthma or those with a poor initial response to β₂ agonist therapy.

9.3.5 MAGNESIUM SULPHATE

There is some evidence that magnesium sulphate has bronchodilator effects.⁶⁰³ A review of 16 trials involving 838 patients showed that nebulised magnesium sulphate when used in addition to nebulised β₂ agonist (with or without nebulised ipratropium) provided no benefit in terms of lung function or need for hospital admission.⁶⁰⁴

A double-blind, placebo-controlled study of 1,109 patients aged over 16 years presenting with an acute asthma attack to 34 emergency departments across the UK randomised patients to intravenous (IV) or nebulised magnesium or to placebo.⁶⁰⁵ Many of these patients had PEF >50% at presentation and the study failed to show improvement in either rate of hospital admission or breathlessness as judged by a visual analogue score. A single dose of IV magnesium sulphate is safe and may improve lung function and reduce intubation rates in patients with acute severe asthma.⁴¹⁴,⁶⁰⁶-⁶⁰⁸ Intravenous magnesium sulphate may also reduce hospital admissions in adults with acute asthma who have had little or no response to standard treatment. However, the heterogeneous nature of the studies included in this review and lack of information on the severity of the asthma attack or when IV magnesium was given in relation to standard treatment limit the conclusions that can be drawn.⁶⁰⁸
The safety and efficacy of repeated IV doses of magnesium sulphate have not been assessed. Repeated doses could cause hypermagnesaemia with muscle weakness and respiratory fatigue.

A Nebulised magnesium sulphate is not recommended for treatment of adults with acute asthma.

B Consider giving a single dose of IV magnesium sulphate to patients with acute severe asthma (PEF <50% best or predicted) who have not had a good initial response to inhaled bronchodilator therapy.

✓ Magnesium sulphate (1.2–2 g IV infusion over 20 minutes) should only be used following consultation with senior medical staff.

9.3.6 INTRAVENOUS AMINOPHYLLINE

In an acute asthma attack, IV aminophylline is not likely to result in any additional bronchodilation compared to standard care with inhaled bronchodilators and steroids. Side effects such as arrhythmias and vomiting are increased if IV aminophylline is used. Use IV aminophylline only after consultation with senior medical staff.

Some patients with near-fatal asthma or life-threatening asthma with a poor response to initial therapy may gain additional benefit from IV aminophylline (5 mg/kg loading dose over 20 minutes unless on maintenance oral therapy, then infusion of 0.5–0.7 mg/kg/hr). Such patients are probably rare and could not be identified in a meta-analysis of trials. If IV aminophylline is given to patients already taking oral aminophylline or theophylline, blood levels should be checked on admission. Levels should be checked daily for all patients on aminophylline infusions.

9.3.7 LEUKOTRIENE RECEPTOR ANTAGONISTS

Current evidence on oral leukotriene receptor antagonists does not support their use in patients with acute asthma. Further studies are required to assess whether IV treatment is effective and safe.

9.3.8 ANTIBIOTICS

When an infection precipitates an asthma attack it is likely to be viral. The role of bacterial infection has been overestimated. Decision making regarding the use of antibiotics in patients with acute asthma should be guided by objective measures including procalcitonin where available.

B Routine prescription of antibiotics is not indicated for patients with acute asthma.
9.3.9 HELIOX

The use of heliox, (helium/oxygen mixture in a ratio of 80:20 or 70:30), either as a driving gas for nebulisers, as a breathing gas, or for artificial ventilation in adults with acute asthma is not supported on the basis of current evidence.614,615 A systematic review of ten trials, including 544 patients with acute asthma, found no improvement in pulmonary function or other outcomes in adults treated with heliox, although the possibility of benefit in patients with more severe obstruction exists.616,617 Heliox requires the use of specifically designed or modified breathing circuits and ventilators.

Heliox is not recommended for use in patients with acute asthma outside a clinical trial setting.

9.3.10 INTRAVENOUS FLUIDS

There are no controlled trials, observational or cohort studies of differing fluid regimes in patients with acute asthma. Some patients require rehydration and correction of electrolyte imbalance. Hypokalaemia can be caused or exacerbated by β2 agonist and/or steroid treatment and must be corrected.

9.3.11 NEBULISED FUROSEMIDE

Although theoretically furosemide may produce bronchodilation, a review of three small trials failed to show any significant benefit of treatment with nebulised furosemide compared to β2 agonists.618

9.3.12 CRITICAL CARE SETTINGS

In adults with acute asthma and a poor response to standard therapy (inhaled bronchodilators, steroids, oxygen and intravenous bronchodilators) other therapies may be considered in the appropriate critical care setting with the appropriate available expertise. There is little high-quality evidence to guide treatment at this stage of an acute asthma attack and it is important to involve a clinician with the appropriate skills in airway management and critical care support as early as possible.

Indications for admission to intensive care or high-dependency units include patients requiring ventilatory support and those with acute severe or life-threatening asthma who are failing to respond to therapy, as evidenced by:559,560

- deteriorating PEF
- persisting or worsening hypoxia
- hypercapnia
- arterial blood gas analysis showing fall in pH or rising hydrogen concentration
- exhaustion, feeble respiration
- drowsiness, confusion, altered conscious state
- respiratory arrest.
Ketamine

A review (including 12 case reports, three RCTs and five other observational studies) of ketamine use in adults and children in status asthmaticus reported that ketamine is a potential bronchodilator but that prospective trials are needed before conclusions about effectiveness can be drawn.619

Recombinant human deoxyribonuclease

A pilot RCT of the use of recombinant human deoxyribonuclease (rhDNAse) in severely ill, non-intubated adults with asthma refractory to bronchodilators reported no benefit of rhDNAse.620

✔ Adults with asthma not responding to standard treatment should be evaluated by a specialist with the appropriate experience and skills to use and assess medication encountered in critical care settings.

✔ In patients with acute severe or life-threatening asthma, anaesthetists and intensivists should be notified as soon as possible if there is no improvement in or deterioration of asthma.

Not all patients admitted to the intensive care unit (ICU) need ventilation, but those with worsening hypoxia or hypercapnia, drowsiness or unconsciousness and those who have had a respiratory arrest require intermittent positive pressure ventilation. Intubation in such patients is very difficult and should be performed by an anaesthetist or ICU consultant.559,560

C All patients transferred to intensive care units should be accompanied by a doctor suitably equipped and skilled to intubate if necessary.

9.3.13 NON-INVASIVE VENTILATION

Non-invasive ventilation (NIV) is well established in the management of ventilatory failure caused by extrapulmonary restrictive conditions and exacerbations of COPD. Hypercapnic respiratory failure developing during an acute asthmatic attack is an indication for urgent ICU admission. It is unlikely that NIV would replace intubation in these very unstable patients but it has been suggested that this treatment can be used safely and effectively.621

Evidence to support the use of NIV in adults is limited and inconclusive. A Cochrane review found only one trial of NIV, with 30 patients, which showed improvement in hospitalisation rates, discharge from emergency departments and lung function.622 Two further small studies suggest that NIV may be safe and feasible in treating patients with severe asthma exacerbations but provide little evidence of benefit compared with standard care.623,624

Larger RCTs are needed to determine the role of NIV in treating patients with acute asthma.622 Future trials should include measurable clinical outcomes such as respiratory parameters, physiological variables and blood gases.

✔ NIV should only be considered in an ICU or equivalent clinical setting.
9.4 FURTHER INVESTIGATION AND MONITORING

- Measure and record PEF 15–30 minutes after starting treatment, and thereafter according to the response. Measure and record PEF before and after nebulised or inhaled β₂ agonist.
- Record oxygen saturation by oximetry and maintain arterial SpO₂ at 94–98%.
- Repeat measurements of blood gas tensions within one hour of starting treatment if:
 - the initial PaO₂ is <8 kPa unless SpO₂ is >92%; or
 - the initial PaCO₂ is normal or raised; or
 - the patient’s condition deteriorates.
- Measure them again if the patient’s condition has not improved by 4–6 hours.
- Measure and record the heart rate.
- Measure serum potassium and blood glucose concentrations.
- Measure the serum theophylline concentration if aminophylline is continued for more than 24 hours (aim for a concentration of 10–20 mg/l or 55–110 mol/l).

9.5 ASTHMA MANAGEMENT PROTOCOLS AND PROFORMAS

The use of structured proformas facilitates improvements in the process of care in emergency departments and hospital wards and improves patient outcomes. The use of this type of documentation can assist data collection aimed at determining the quality of care and outcomes.567,625,626

9.6 HOSPITAL DISCHARGE AND FOLLOW UP

Annex 4 summarises management of acute severe asthma in hospital.

An asthma care bundle developed by the BTS is also available from the BTS website (www.brit-thoracic.org.uk).

9.6.1 TIMING OF DISCHARGE

No single physiological parameter defines absolutely the timing of discharge from an admission with acute asthma. Patients should have clinical signs compatible with home management, be on reducing amounts of β₂ agonist (preferably no more than four hourly) and be on medical therapy they can continue safely at home.

Although diurnal variability of PEF is not always present during an asthma attack, evidence suggests that patients discharged with PEF <75% best or predicted and with diurnal variability >25% are at greater risk of early relapse and readmission.627,628
9.6.2 PATIENT EDUCATION
Following discharge from hospital or emergency departments, a proportion of patients reattend with more than 15% reattending within two weeks. Some repeat attenders need emergency care, but many delay seeking help, and are undertreated and/or undermonitored.629

Prior to discharge, trained staff should give asthma education. This should include education on inhaler technique and PEF record keeping, with a written PEF and symptom-based PAAP being provided allowing the patient to adjust their therapy within recommendations. These measures have been shown to reduce morbidity after the asthma attack and reduce relapse rates.630

Some patients may use emergency departments rather than primary care services for their asthma care. Education has been shown to reduce subsequent hospital admission and improve scheduled appointments and self-management techniques but does not improve reattendance at emergency departments.169

For the above groups there is a role for a trained asthma liaison nurse based in, or associated with, the emergency department.169

Patient education is covered in section 5.2.1

9.6.3 FOLLOW UP
A careful history should elicit the reasons for the asthma attack and explore possible actions the patient should take to prevent future emergency presentations.

Medication should be altered depending upon the assessment and the patient provided with an asthma action plan aimed at preventing relapse, optimising treatment and preventing delay in seeking assistance in the future.

Prior to discharge, follow up should be arranged with the patient’s general practitioner or asthma nurse within two working days and with a hospital specialist asthma nurse or respiratory physician at about one month after admission.

In a small RCT, follow-up care by a nurse specialist was as effective and safe as that given by a respiratory doctor.631

Assisting patients in making appointments while being treated for an acute asthma attack in emergency departments may improve subsequent attendance at primary care centres.632

It is essential that the patient’s primary care practice is informed within 24 hours of discharge from the emergency department or hospital following an asthma attack. Ideally this communication should be directly with a named individual responsible for asthma care within the practice, by means of fax or email.

9.7 ACUTE ASThma IN CHILDREN
The assessment of acute asthma in children under five can be difficult. Intermittent wheezing attacks are usually triggered by viral infection and the response to asthma medication may be inconsistent. Prematurity and low birth weight are risk factors for recurrent wheezing. The differential diagnosis of symptoms includes aspiration pneumonitis, pneumonia, bronchiolitis, tracheomalacia, and complications of underlying conditions such as congenital anomalies and cystic fibrosis. This guideline is intended for children who are thought to have acute wheeze related to underlying asthma and should be used with caution in younger children who do yet have a considered diagnosis.
of asthma, particularly those under two years of age. The guideline is not intended for children under one year of age unless directed by a respiratory paediatrician. The guideline should not be used to treat acute bronchiolitis.

9.7.1 CLINICAL ASSESSMENT

Table 14 details criteria for assessment of severity of acute asthma attacks in children. Annexes 5–8 contain algorithms summarising the recommended treatments for children presenting with acute or uncontrolled asthma in primary care (see Annex 5), the ED (see Annex 6), and hospital (see Annexes 7 and 8).

Table 14: Levels of severity of acute asthma attacks in children[^13]

<table>
<thead>
<tr>
<th>Level of Severity</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate asthma</td>
<td>Able to talk in sentences, $\text{SpO}_2 \geq 92%$, PEF $\geq 50%$ best or predicted, Heart rate $\leq 140/\text{min in children aged 1–5 years}$, Heart rate $\leq 125/\text{min in children >5 years}$, Respiratory rate $\leq 40/\text{min in children aged 1–5 years}$, Respiratory rate $\leq 30/\text{min in children >5 years}$</td>
</tr>
<tr>
<td>Acute severe asthma</td>
<td>Can't complete sentences in one breath or too breathless to talk or feed, $\text{SpO}_2 < 92%$, PEF $33–50%$ best or predicted, Heart rate $> 140/\text{min in children aged 1–5 years}$, Heart rate $> 125/\text{min in children >5 years}$, Respiratory rate $> 40/\text{min in children aged 1–5 years}$, Respiratory rate $> 30/\text{min in children >5 years}$</td>
</tr>
<tr>
<td>Life-threatening asthma</td>
<td>Any one of the following in a child with severe asthma: Clinical signs, Measurements</td>
</tr>
<tr>
<td></td>
<td>$\text{SpO}_2 < 92%$, PEF $< 33%$ best or predicted, Poor respiratory effort, Hypotension, Exhaustion, Confusion</td>
</tr>
</tbody>
</table>
Before children can receive appropriate treatment for an acute asthma attack in any setting, it is essential to assess accurately the severity of their symptoms. The following clinical signs should be recorded:

- Pulse rate
 (Increasing tachycardia generally denotes worsening asthma; a fall in heart rate in life-threatening asthma is a pre-terminal event)
- Respiratory rate and degree of breathlessness
 (ie too breathless to complete sentences in one breath or to feed)
- Use of accessory muscles of respiration
 (best noted by palpation of neck muscles)
- Amount of wheezing
 (which might become biphasic or less apparent with increasing airways obstruction)
- Degree of agitation and conscious level
 (always give calm reassurance).

Clinical signs correlate poorly with the severity of airways obstruction. Some children with acute severe asthma do not appear distressed.

Decisions about admission should be made by trained clinicians after repeated assessment of the response to bronchodilator treatment.

9.7.2 PULSE OXIMETRY

Accurate measurements of oxygen saturation are essential in the assessment of all children with acute wheezing. Oxygen saturation monitors should be available for use by all healthcare professionals assessing acute asthma in both primary and secondary care settings.

Low oxygen saturations after initial bronchodilator treatment selects a group of patients with more severe asthma.

<table>
<thead>
<tr>
<th>B Consider intensive inpatient treatment of children with SpO₂ <92% in air after initial bronchodilator treatment.</th>
</tr>
</thead>
</table>

9.7.3 PEAK EXPIRATORY FLOW

PEF measurements can be of benefit in assessing children who are familiar with the use of such devices. The best of three PEF measurements, ideally expressed as a percentage of personal best, can be useful in assessing the response to treatment.

A measurement of <50% predicted PEF or FEV₁ with poor improvement after initial bronchodilator treatment is predictive of a more prolonged asthma attack.

9.7.4 CHEST X-RAY

Chest X-rays rarely provide additional useful information and are not routinely indicated.

<table>
<thead>
<tr>
<th>A chest X-ray should be performed if there is subcutaneous emphysema, persisting unilateral signs suggesting pneumothorax, lobar collapse or consolidation and/or life-threatening asthma not responding to treatment.</th>
</tr>
</thead>
</table>
9.7.5 BLOOD GASES

Blood gas measurements should be considered if there are life-threatening features not responding to treatment. Arteriolised ear lobe blood gases can be used to obtain an accurate measure of pH and PaCO₂. If ear lobe sampling is not practicable a finger prick sample can be an alternative. Normal or raised PaCO₂ levels are indicative of worsening asthma. A more easily obtained free flowing venous blood PaCO₂ measurement of <6 kPa (45 millimetres of mercury) excludes hypercapnia.

9.8 INITIAL TREATMENT OF ACUTE ASTHMA IN CHILDREN

There is good evidence supporting recommendations for the initial treatment of children with acute asthma presenting to primary and secondary healthcare centres. There is less evidence to guide the use of second-line therapies to treat the small number of severe cases of acute asthma poorly responsive to first-line measures. Despite this, the risks of death and other adverse outcomes after admission to hospital are extremely low irrespective of the treatment options chosen.

Emergency departments attending to children with acute asthma should have a nurse trained in paediatrics available on duty at all times and staff familiar with the specific needs of children. Using a proforma can increase the accuracy of severity assessment.

The use of an assessment-driven algorithm and an integrated care pathway has been shown to reduce hospital stay without substantial increases in treatment costs.

D The use of structured care protocols detailing bronchodilator usage, clinical assessment, and specific criteria for safe discharge is recommended.

9.8.1 OXYGEN

Children with life-threatening asthma or SpO₂ <94% should receive high-flow oxygen via a tight fitting face mask or nasal cannula at sufficient flow rates to achieve normal saturations of 94–98%.

9.8.2 INHALED SHORT-ACTING β₂ AGONISTS

Inhaled β₂ agonists are the first-line treatment for acute asthma in children aged 2 years and over. Assessment of response should be based on accurately recorded clinical observations and repeat measurements of oxygenation (SpO₂) (see Table 14). Children receiving β₂ agonists via a pMDI + spacer are less likely to have tachycardia and hypoxia than when the same drug is given via a nebuliser. In children under two who have a poor initial response to β₂ agonists administered with adequate technique, consider an alternative diagnosis and other treatment options.

A Inhaled β₂ agonists are the first-line treatment for acute asthma in children.

Discontinue long-acting β₂ agonists when short-acting β₂ agonists are required more often than four hourly.

A A pMDI + spacer is the preferred option for children with mild to moderate asthma.
Children less than three years of age are likely to require a face mask connected to the mouthpiece of a spacer for successful drug delivery. Inhalers should be actuated into the spacer in individual puffs and inhaled immediately by tidal breathing (for five breaths).

Frequent doses of β₂ agonists are safe for the treatment of acute asthma, although children with mild symptoms benefit from lower doses.

B Individualise drug dosing according to severity and adjust according to the patient’s response.

Two to four puffs of salbutamol (100 micrograms via a pMDI + spacer) might be sufficient for mild asthma attacks, although up to 10 puffs might be needed for more severe attacks. Single puffs should be given one at a time and inhaled separately with five tidal breaths. Relief from symptoms should last 3–4 hours. If symptoms return within this time a further or larger dose (maximum 10 puffs) should be given and the parents/carer should seek urgent medical advice.

Children with severe or life-threatening asthma (SpO₂ <92%) should receive frequent doses of nebulised bronchodilators driven by oxygen (2.5–5 mg salbutamol). If there is poor response to the initial dose of β₂ agonists, subsequent doses should be given in combination with nebulised ipratropium bromide (see section 9.8.3). Doses of nebulised bronchodilator can be repeated every 20–30 minutes. Continuous nebulised β₂ agonists are of no greater benefit than the use of frequent intermittent doses in the same total hourly dosage. Once improving on two- to four-hourly salbutamol, patients should be switched to a pMDI and spacer treatment as tolerated.

Schools can hold a generic reliever inhaler enabling them to treat an acutely wheezy child whilst awaiting medical advice. This is safe and potentially life saving.

- Increase β₂ agonist dose by giving one puff every 30–60 seconds, according to response, up to a maximum of ten puffs.

- Parents/carers of children with an acute asthma attack at home, and symptoms not controlled by up to 10 puffs of salbutamol via a pMDI and spacer, should seek urgent medical attention.

- If symptoms are severe additional doses of bronchodilator should be given as needed whilst awaiting medical attention.

- Paramedics attending to children with an acute asthma attack should administer nebulised salbutamol, using a nebuliser driven by oxygen if symptoms are severe, whilst transferring the child to the emergency department.

- Children with severe or life-threatening asthma should be transferred to hospital urgently.
9.8.3 IPRATROPIUM BROMIDE

There is good evidence for the safety and efficacy of frequent doses of ipratropium bromide (every 20–30 minutes) used in addition to β₂ agonists for the first two hours of a severe asthma attack. Benefits are more apparent in the most severe patients.647

A If symptoms are refractory to initial β₂ agonist treatment, add ipratropium bromide (250 micrograms/dose mixed with the nebulised β₂ agonist solution).

Frequent doses up to every 20–30 minutes (250 micrograms/dose mixed with 5 mg of salbutamol solution in the same nebuliser) should be used for the first few hours of admission. Salbutamol dose should be tapered to one- to two-hourly thereafter according to clinical response. The ipratropium dose should be tapered to four- to six-hourly or discontinued.

✔ Repeated doses of ipratropium bromide should be given early to treat children who are poorly responsive to β₂ agonists.

9.8.4 STEROID THERAPY

The early use of steroids in emergency departments and assessment units can reduce the need for hospital admission and prevent a relapse in symptoms after initial presentation.592,593 Benefits can be apparent within three to four hours. In head-to-head comparisons there is insufficient evidence to suggest that dexamethasone offers an advantage over prednisolone for the management of mild to moderate acute asthma in children. Further studies may indicate whether a single dose of dexamethasone may offer clinical benefit over multiple doses of prednisolone.648–650

A large UK study of pre-school children with mild to moderate wheeze associated with viral infection showed no reduction in hospital stay (or other outcomes) following treatment with oral steroids. In the acute situation, it is often difficult to determine whether a pre-school child has asthma or episodic viral wheeze. Children with severe symptoms requiring hospital admission should still receive oral steroids. In children who present with moderate to severe wheeze without a previous diagnosis of asthma it is still advisable to give oral steroids. For children with frequent episodes of wheeze associated with viruses caution should be taken in prescribing multiple courses of oral steroids.651

A Give oral steroids early in the treatment of acute asthma attacks in children.

B Oral prednisolone is the steroid of choice for asthma attacks in children unless the patient is unable to tolerate the dose.

Use a dose of 10 mg of prednisolone for children under 2 years of age, a dose of 20 mg for children aged 2–5 years and a dose of 30–40 mg for children older than 5 years. Oral and intravenous steroids are of similar efficacy.594,652,653 Intravenous hydrocortisone (4 mg/kg repeated four hourly) should be reserved for severely affected children who are unable to retain oral medication.
Larger doses do not appear to offer a therapeutic advantage for the majority of children.654 There is no need to taper the dose of steroid tablets at the end of treatment.596,597

- Use a dose of 10 mg prednisolone for children under 2 years of age, 20 mg for children aged 2–5 years and 30–40 mg for children older than 5 years. Those already receiving maintenance steroid tablets should receive 2 mg/kg prednisolone up to a maximum dose of 60 mg.
- Repeat the dose of prednisolone in children who vomit and consider intravenous steroids in those who are unable to retain orally ingested medication.
- Treatment for up to three days is usually sufficient, but the length of course should be tailored to the number of days necessary to bring about recovery. Tapering is unnecessary unless the course of steroids exceeds 14 days.

Inhaled corticosteroids

There is insufficient evidence to support the use of ICS as alternative or additional treatment to steroid tablets for children with acute asthma.598,655-662

Do not use inhaled corticosteroids in place of oral steroids to treat children with an acute asthma attack.

Children with chronic asthma not receiving regular preventative treatment will benefit from starting ICS as part of their long-term management. There is no evidence that increasing the dose of ICS is effective in treating acute symptoms, but it is good practice for children already receiving ICS to continue with their usual maintenance doses.

It is good practice for children already receiving inhaled corticosteroids to continue with their usual maintenance dose during an asthma attack whilst receiving additional treatment.

9.8.5 ANTIBIOTICS

There is insufficient evidence to support or refute the role of antibiotics in acute asthma,439 but the majority of acute asthma attacks are triggered by viral infection.

Do not give antibiotics routinely in the management of children with acute asthma.

9.8.6 LEUKOTRIENE RECEPTOR ANTAGONISTS

Initiating oral montelukast in primary care settings, early after the onset of an acute asthma attack, can result in decreased asthma symptoms and the need for subsequent healthcare attendances in those with mild asthma attacks.505,663 Current evidence shows no benefit for the addition of leukotriene receptor antagonists to standard asthma treatment for moderate to severe asthma attacks.610
9.8.7 NEBULISED MAGNESIUM SULPHATE

There is no evidence to support the use of nebulised magnesium sulphate, either in place of or in conjunction with inhaled β₂ agonists, in children with mild to moderate asthma. A subgroup analysis from a large RCT suggests a possible role in children with more severe asthma attacks (SpO₂ <92%) or with short duration of deterioration. Further studies are required to evaluate which clinical groups would benefit the most from this intervention.

A Nebulised magnesium sulphate is not recommended for children with mild to moderate asthma attacks.

C Consider adding 150 mg magnesium sulphate to each nebulised salbutamol and ipratropium in the first hour in children with a short duration of acute severe asthma symptoms presenting with an SpO₂ <92%.

9.9 SECOND-LINE TREATMENT OF ACUTE ASTHMA IN CHILDREN

Children with continuing severe asthma despite optimal first-line treatments, frequent nebulised β₂ agonists and ipratropium bromide plus oral steroids, and those with life-threatening features, need urgent review by a specialist with a view to management in an appropriate high-dependency area or transfer to a paediatric intensive care unit to receive second-line intravenous therapies.

Three options, IV magnesium sulphate, IV β₂ agonist or IV aminophylline can be considered. In one RCT comparing all three agents in 100 children, a bolus of magnesium sulphate was shown to reduce clinical symptoms faster than the other treatments. There were no significant side effects documented in the magnesium sulphate group. A systematic review of four paediatric trials comparing IV salbutamol with IV aminophylline demonstrated equivalence. One study found a shorter length of stay in the aminophylline group although these patients received a bolus followed by an infusion, compared to a single bolus of IV salbutamol. Both IV salbutamol and IV aminophylline can cause side effects and should be administered with appropriate monitoring.

9.9.1 INTRAVENOUS SALBUTAMOL

The role of intravenous β₂ agonists in addition to nebulised treatment remains unclear. One study has shown that an IV bolus of salbutamol given in addition to near-maximal doses of nebulised salbutamol results in clinically significant benefits for those with moderate to severe asthma.

B Consider early addition of a single bolus dose of intravenous salbutamol (15 micrograms/kg over 10 minutes) in a severe asthma attack where the child has not responded to initial inhaled therapy.
A continuous intravenous infusion of salbutamol should be considered when there is uncertainty about reliable inhalation or for severe refractory asthma. This should be given in a high dependency unit with continuous electrocardiogram (ECG) monitoring and twice daily electrolyte monitoring. Doses above 1–2 micrograms/kg/min (200 micrograms/ml solution) should be given in a paediatric intensive care unit setting (up to 5 micrograms/kg/min). Nebulised bronchodilators should be continued while the patient is receiving intravenous bronchodilators. Once the patient is improving the intravenous infusion should be reduced before reducing the frequency of nebulised bronchodilators.

- When inserting an IV cannula take a blood sample to measure serum electrolytes. Serum potassium levels are often low after multiple doses of β₂ agonists and should be replaced.
- If intravenous β₂ agonist infusions are used, consider monitoring serum lactate to monitor for toxicity.

9.9.2 INTRAVENOUS AMINOPHYLLINE

There is no evidence that aminophylline is of benefit for mild to moderate asthma and side effects are common and troublesome. One well-conducted study has shown evidence of benefit in children with acute severe asthma unresponsive to multiple doses of β₂ agonists and steroids, although the loading dose used was double that currently recommended in the UK and a third of patients were withdrawn from active medication because of vomiting.

- Aminophylline is not recommended in children with mild to moderate acute asthma.
- Consider aminophylline for children with severe or life-threatening asthma unresponsive to maximal doses of bronchodilators and steroids.

A 5 mg/kg loading dose should be given over 20 minutes (omit in those receiving maintenance oral theophyllines) with ECG monitoring followed by a continuous infusion at 1 mg/kg/hour. Measure serum theophylline levels in patients already receiving oral treatment and in those receiving prolonged treatment.

9.9.3 INTRAVENOUS MAGNESIUM SULPHATE

Intravenous magnesium sulphate is a safe treatment for acute asthma in children not responding to first-line treatment. Doses of up to 50 mg/kg/day (maximum 2 g) have been used. The potential side effect of hypotension is rare.

- In children who respond poorly to first-line treatments, consider the addition of intravenous magnesium sulphate as first-line intravenous treatment (40 mg/kg/day).
9.9.4 OTHER THERAPIES

Heliox

There is no evidence to support the use of heliox for the treatment of acute asthma in childhood.

Recombinant human deoxyribonuclease

There is no evidence to support the use of recombinant human deoxyribonuclease (rhDNAase) in acute asthma in children.

9.9.5 CRITICAL CARE

In children with acute asthma and a poor response to standard therapy (inhaled bronchodilators, steroids, oxygen and intravenous bronchodilators) other therapies may be considered in the appropriate critical care setting with the appropriate available expertise. There is little high-quality evidence to guide treatment at this stage of an acute asthma attack and it is important to involve a clinician with the appropriate skills in airway management and critical care support as early as possible.

Ketamine

A systematic review of the use of ketamine for the management of acute asthma attacks in children found only one small study (n=68), among non-intubated children, suitable for inclusion. No benefit from ketamine compared with placebo in terms of respiratory rate, oxygen saturation, hospital admission rate, need for mechanical ventilation, or need for other adjuvant therapy was found.670

Sevoflurane

A small (n=7) non-comparative study of sevoflurane in children with life-threatening asthma reported that sevoflurane inhalation corrects high levels of PaCO₂ and provides clinical improvement in mechanically ventilated children.671 Use of this agent is, however, limited to areas with appropriate scavenging facilities to extract gas in order to protect healthcare staff.

There is little high-quality evidence to guide treatment of acute asthma in children with a poor response to standard therapy (inhaled bronchodilators, steroids, oxygen and intravenous bronchodilators). It is, therefore, important to involve a clinician with the appropriate skills in airway management and critical care support as soon as possible.

Children with asthma not responding to standard treatment should be evaluated by a specialist with the appropriate experience and skills to use and assess medication familiar to those in critical care settings.

9.9.6 NON-INVASIVE VENTILATION

Non-invasive ventilation as a treatment approach for children admitted to hospital with status asthmaticus has been reported in two small studies, one a pilot study for an RCT.672,673 Although there is some evidence that NIV is safe and feasible for use in this population, there is little evidence of its effectiveness and insufficient evidence on which to base a recommendation.

Future trials, including measurable clinical outcomes such as respiratory parameters, physiological variables and blood gases, are needed to assess the role of NIV in treating children with status asthmaticus.
British guideline on the management of asthma

9.9.7 DISCHARGE PLANNING

Children can be discharged when stable on 3–4 hourly inhaled bronchodilators that can be continued at home. PEF and/or FEV₁ should be >75% of best or predicted and SpO₂ >94%. An asthma care bundle developed by BTS is also available from the BTS website (www.brit-thoracic.org.uk). Adult studies show that optimal care comprising self monitoring, regular review and a written PAAP can improve outcomes. Acute asthma attacks should be considered a failure of preventive therapy and thought should be given about how to help families avoid further severe episodes.

Discharge plans should address the following:

- the diagnosis – clearly document the criteria used to diagnose asthma
- check inhaler technique
- consider the need for preventer treatment or optimising/adjusting previously prescribed preventer treatments
- provide a written PAAP for subsequent asthma attacks with clear instructions about the use of bronchodilators and the need to seek urgent medical attention in the event of worsening symptoms not controlled by up to 10 puffs of salbutamol 4 hourly
- assess exposure to environmental tobacco smoke or actual smoking in older children and refer to suitable agencies where appropriate
- identify the trigger of the acute attack and discuss future management plans for exposure
- arrange follow up by primary care services within two working days
- arrange follow up in a paediatric asthma clinic within one to two months
- arrange referral to a paediatric respiratory specialist if there have been life-threatening features.

Many children with recurrent episodes of wheeze triggered by viruses do not go on to develop atopic asthma. The need for regular preventer treatment may depend on the severity and frequency of episodes. Many may not require inhaled corticosteroids.
10 Difficult asthma

10.1 DEFINING AND ASSESSING DIFFICULT ASTHMA

The term difficult asthma generally refers to a clinical situation where a prior diagnosis of asthma exists, and asthma-like symptoms and asthma attacks persist, despite prescription of high-dose asthma therapy. There is no universally agreed definition of difficult asthma in children or adults, and specifically at what level of treatment prescription or asthma attack frequency, the term difficult asthma should apply. Consequently there are no precise data on the prevalence of this clinical problem. Previous consensus studies have suggested failure to achieve symptom control despite prescribed high-dose ICS as a minimum requirement, whilst more recent consensus work has stipulated a treatment level equivalent to at least high-dose therapies (see section 7.5 and Figures 2 and 3), before labelling as ‘difficult’.

In this guideline difficult asthma is defined as persistent symptoms and/or frequent asthma attacks despite treatment with high-dose therapies (see section 7.5) or continuous or frequent use of oral steroids (see section 7.6).

Observational uncontrolled studies in participants with difficult asthma, using multidisciplinary assessment models have identified high rates of alternative or coexistent diagnoses and psychological comorbidity. These uncontrolled studies, using systematic multidisciplinary assessment and management, have suggested improved outcomes in adults and children, but controlled clinical trials are required. Within this broadly defined group of participants with difficult asthma, a proportion will have refractory disease, which is relatively resistant to currently available therapies. This group can only be identified after detailed evaluation, including exclusion of alternative causes of persistent symptoms, management of other comorbidities and confirmation of adherence with therapy.

D Patients with difficult asthma should be systematically evaluated, including:
- confirmation of the diagnosis of asthma, and
- identification of the mechanism of persisting symptoms and assessment of adherence to therapy.

D This assessment should be facilitated through a dedicated multidisciplinary difficult asthma service, by a team experienced in the assessment and management of difficult asthma.

10.2 FACTORS CONTRIBUTING TO DIFFICULT ASTHMA

10.2.1 POOR ADHERENCE

Poor adherence with asthma medication is associated with poor asthma outcome in adults and children (see section 5.4). Two UK studies in adults attending specialist difficult asthma services documented high levels of poor adherence identified by low prescription filling. A study of 182 patients in the Northern Ireland Regional Difficult Asthma Service found that 63 patients (35%) filled 50% or fewer inhaled LABA/ICS prescriptions and 88% admitted poor adherence with inhaled therapy after initial denial; 23 of the 51 patients (45%) prescribed oral steroids were found to be non-adherent using serum prednisolone/cortisol testing. In another study, 75 of 115 (65.2%) patients filled prescriptions for <80% of ICS medication and had significantly worse lung function, higher sputum eosinophil counts and prior ventilation compared to adherent patients. A study of 71 school-aged children with persistent symptoms,
Despite high-dose treatment or continuous or frequent use of oral steroids, attending one hospital in London, found that 56 (79%) had potentially modifiable risk factors, the two most common of which were psychosocial factors (59%) and medication issues including adherence (48%). In 39 children (55%) the factors identified and the interventions recommended meant that further escalation of treatment was avoided. In a paediatric case-control series, poor adherence based on prescription records was identified in 22% of children with difficult to control asthma, although adherence was not reported in the stable controls. In a descriptive study of 100 adult participants with a physician diagnosis of ‘severe asthma; 28 patients were on >15 mg prednisolone and of these nine (32%) were found to be non-adherent with prednisolone.

There is a need to identify patients who have poor control solely as a result of poor adherence to simple, currently available therapies. In theory, improving adherence through monitoring and intervention could potentially reduce asthma attacks, target resources for genuine therapy-resistant cases and reduce overall health costs by minimising asthma attacks, hospitalisation and health resource use.

Monitoring adherence is likely to be beneficial to asthma control and there is some evidence that it can improve lung function and quality of life. Adherence monitoring based on self assessment is unlikely to be accurate and objective measures are therefore needed. An ancillary study to an RCT showed that there was very poor agreement between objective (doses remaining in Turbohaler device) and subjective (self-reported) measurements of adherence in children aged 5–12 years with mild or moderate asthma and airway hyper-responsiveness to methacholine, and that self reporting failed to detect poor adherence. Objective measurement of non-adherence based on FeNO suppression in adults with difficult asthma was demonstrated in one study although further validation of this test is required. Some other objective measures such as prescription filling are problematical because patients may fill prescriptions but not take the medication.

Healthcare professionals should always consider poor adherence to maintenance therapy before escalating treatment in patients with difficult asthma.

10.2.2 PSYCHOSOCIAL FACTORS

Fatal and near-fatal asthma have been associated with adverse psychosocial factors (see section 9.1.3). Most observational studies and a case–control study in patients with difficult asthma have also suggested a high level of psychological morbidity, though this observation has not been universal.

A meta-analysis of behavioural adjustment in children suggested increasing asthma severity, defined on the basis of treatment requirements, was associated with greater behavioural difficulties. The core issue of cause and effect remains unclear; specifically the extent to which persistent asthma symptoms, despite aggressive treatment, results in psychological morbidity or whether pre-existing psychological morbidity makes asthma difficult to control.
There is a lack of evidence that interventions specifically targeting psychological morbidity in difficult asthma are of benefit. A small proof of concept study targeting treatment of depression demonstrated a reduction in oral steroid use, and an observational study in high-risk children with asthma suggested potential benefit from joint consultation with a child psychiatrist, with an improvement in symptom scores and adherence to therapy. However, a non-blinded randomised intervention study in adults with difficult asthma showed no benefit from a six month nurse-delivered psychoeducational programme. A meta-analysis of psychoeducational interventions in patients with difficult asthma concluded that many of the studies were of poor quality, although there was some evidence of a positive effect from psychosocial educational interventions on hospital admissions in adults and children and on symptoms in children. There was not enough evidence to warrant significant changes in clinical practice and little information available on cost effectiveness.

C Healthcare professionals should be aware that difficult asthma is commonly associated with coexistent psychological morbidity.

D Assessment of coexistent psychological morbidity should be performed as part of a difficult asthma assessment. In children this may include a psychosocial assessment of the family.

10.2.3 DYSFUNCTIONAL BREATHING

Observational uncontrolled studies in patients with difficult asthma have identified high rates of dysfunctional breathing as an alternative or concomitant diagnosis to asthma causing symptoms. It remains unclear what is the best mechanism of identifying and managing this problem.

D Dysfunctional breathing should be considered as part of a difficult asthma assessment.

10.2.4 ALLERGY

Acute asthma has been associated with IgE dependent sensitisation to indoor allergens. In case-control studies, mould sensitisation has been associated with recurrent admission to hospital and oral steroid use and with intensive care unit admissions and respiratory arrest. There is no published evidence of any intervention study in this patient group. Research in this area is required.

C In patients with difficult asthma and recurrent hospital admission, allergen testing to moulds should be performed.
10.2.5 MONITORING AIRWAY RESPONSE

Two randomised blinded controlled trials and one open randomised study have supported the use of titrating steroid treatment against sputum eosinophilia in adults with moderate to severe asthma, with greatest benefit seen in patients receiving higher doses of ICS therapy. In the study with the largest number of patients receiving high dose ICS treatment, patients who were considered to be poorly adherent with treatment, or had inadequately controlled aggravating factors, such as rhinitis or gastro-oesophageal reflux were specifically excluded. Case series have suggested that sputum induction is safe in patients with difficult to control asthma.

Controlled studies using FeNO to target treatment have not specifically targeted adults or children with difficult asthma.

In patients with difficult asthma, consider monitoring induced sputum eosinophil counts to guide steroid treatment.
11 Asthma in adolescents

11.1 DEFINITIONS

Adolescence is the transitional period of growth and development between puberty and adulthood, defined by the WHO as between 10 and 19 years of age.4

There is international agreement on best practice for working with adolescents with health problems outlined in consensus publications.707-709 Key elements of working effectively with adolescents in the transition to adulthood include:710

- seeing them on their own, separate from their parents, for part of the consultation, and
- discussing confidentiality and its limitations.

For diagnosing and managing asthma in adolescents, the evidence base is limited. Much recent research has focused on the prevalence of asthma and ecological risk associations rather than on diagnosis and management of asthma in adolescents.

11.2 PREVALENCE OF ASTHMA IN ADOLESCENCE

Asthma is common in adolescence with a prevalence of wheeze in 13–14 year olds in Western Europe in the past 12 months (current wheeze) of 14.3%.711 For more severe asthma (defined as ≥4 attacks of wheeze or ≥1 night per week sleep disturbance from wheeze or wheeze affecting speech in the past 12 months) the prevalence was 6.2%.

There is evidence of underdiagnosis of asthma in adolescents, with estimates of 20–30% of all asthma present in this age group being undiagnosed.711-714 This has been attributed to under-reporting of symptoms. A number of risk factors have independently been associated with underdiagnosis including: female gender, smoking (both current smoking and passive exposure), low socioeconomic status, family problems, low physical activity and high body mass, and race/ethnicity.714 Children with undiagnosed frequent wheezing do not receive adequate healthcare for their illness714 and the health consequences of not being diagnosed with asthma are substantial.715,716

Although feasible, there is insufficient evidence to support screening for asthma in adolescents.717,718

Clinicians seeing adolescents with any cardiorespiratory symptoms should ask about symptoms of asthma.

11.3 DIAGNOSIS AND ASSESSMENT

No evidence was identified to suggest that the symptoms and signs of asthma in adolescents are different from those of other age groups.

11.3.1 EXERCISE-RELATED SYMPTOMS

Exercise-related wheezing and breathlessness are common asthma symptoms in adolescents. However, these symptoms are poor predictors of exercise-induced asthma. Only a minority of adolescents referred for assessment of exercise-induced respiratory symptoms show objective evidence of exercise-induced bronchospasm.719 Other diagnoses producing reproducible symptoms on exercise include normal physiological exercise limitation, with and without poor physical fitness, vocal cord dysfunction, dysfunctional breathing, habit cough, and supraventricular tachycardia.45
Most exercise-related wheezing in adolescents can be diagnosed and managed by careful clinical assessment. The absence of other features of asthma and an absent response to pre-treatment with β_2 agonist make exercise-induced asthma unlikely. Exercise testing with cardiac and respiratory monitoring that reproduces the symptoms may be helpful in identifying the specific cause.

11.3.2 USE OF QUESTIONNAIRES

When using questionnaires, the prevalence of current symptoms is higher when the adolescent completes the questions rather than the parents, while questions about the last 12 months give similar results between the parents and the adolescent.

In one study in adolescents, internet-based and written questionnaires about asthma provided equivalent results. The ACQ and the Asthma Control Test have been validated in adolescents with asthma (see Table 7).

11.3.3 QUALITY OF LIFE MEASURES

Quality of life (QoL) scales (such as AQLQ12+) can be used in adolescents.

11.3.4 LUNG FUNCTION

In adolescents with asthma, tests of airflow obstruction and airway responsiveness may provide support for a diagnosis of asthma. However, most adolescents with asthma have normal lung function despite having symptoms.

11.3.5 BRONCHIAL HYPER-REACTIVITY

Although many children with asthma go into long-lasting clinical remission at adolescence, BHR may persist. Whether persisting BHR reflects ongoing airway inflammation is debated.

A negative response to an exercise test is helpful in excluding asthma in children with exercise-related breathlessness.

11.4 RISK FACTORS

There is a body of evidence from cohort studies highlighting risk factors for asthma in adolescents.

11.4.1 ATOPY

Studies confirm that atopic dermatitis and atopic rhinitis are amongst the factors most strongly associated with asthma persisting into teenage years.

11.4.2 PREMATURITY AND EARLY LIFE WHEEZING

Adolescents who were very low birth weight due to prematurity (as opposed to intrauterine growth retardation) were more prone to chronic cough, wheezing and asthma and showed medium and small airway obstruction compared with matched controls.

Frequent or severe episodes of wheezing in childhood are associated with recurrent wheeze that persists into adolescence.
11.4.3 GENDER
During adolescence there is a reversal of the gender association of asthma with the disease being more prevalent in females than males from 13–14 years onwards. The same change is seen with asthma attacks, with risk of an asthma admission in females becoming double that observed in males from around 13–14 years. This phenomenon has been attributed to a greater incidence of asthma among teenage girls.

11.4.4 CHLORINATED SWIMMING POOLS
Exposure to chlorinated swimming pools has been associated with an increased risk of asthma, airway inflammation and some respiratory allergies. Such associations were not found among adolescents without atopy or in those who attended copper-silver sanitised pools.

11.5 COMORBIDITIES AND MODIFIABLE BEHAVIOURS

11.5.1 ANXIETY AND DEPRESSIVE DISORDERS
Asthma in adolescence is associated with an increased likelihood of major depression, panic attacks and anxiety disorder. This may reflect effects of common factors associated with anxiety and depressive disorders rather than a direct causal link with asthma. In young people with asthma, the presence of an anxiety or depressive disorder is highly associated with increased asthma symptom burden. Depressive symptoms were one risk factor identified in children and adolescents who died of asthma. Assessment of anxiety may help identify individuals who are at risk for poorer asthma-specific quality of life.

Clinical conditions associated with anxiety may be mistaken for, or overlap with asthma. These include dysfunctional breathing (hyperventilation syndrome and sighing dyspnoea), vocal cord dysfunction, and psychogenic cough. These conditions can present acutely and may often be frightening to the young person. This may lead to a cycle of bronchodilator overuse, which then further exacerbates the symptoms. Detailed medical assessment with careful attention to the adolescent’s personal perceptions and experiences of their symptoms is required to make an accurate diagnosis.

Brief screening questionnaires for anxiety and depression suitable for use in adolescents are available and may help identify those with significant anxiety and depression.

11.5.2 OBESITY
The evidence on whether asthma is more common in overweight and obese adolescents with asthma is conflicting. While weight reduction in obese adults with asthma improves lung function, symptoms, morbidity and health status, this has not yet been established in adolescents with asthma.

11.5.3 GASTRO-OESOPHAGEAL REFLUX AND GASTRO-OESOPHAGEAL REFLUX DISEASE
Gastro-oesophageal reflux and GORD is common in patients with asthma, including adolescents. A systematic review confirmed an association between GORD and asthma in children and adolescents in secondary and tertiary referral settings. The nature of the association, however, is unclear. There is no evidence that treatment for GORD improves asthma symptoms in children and adolescents with GORD and asthma.
11.6 ASTHMA ATTACKS AND THE RISK OF HOSPITAL ADMISSION

Clinical characteristics and markers of severity, including frequent respiratory symptoms, airway hyper-responsiveness, atopy, and low lung function, identify those at high risk of hospitalisation for asthma, particularly with respect to multiple admissions.746

11.7 LONG-TERM OUTLOOK AND ENTRY INTO THE WORK PLACE

A long-term follow-up study of vocational and working careers found that adolescents and young adults (10–22 years) with relatively mild asthma had slightly more limitations in vocational and professional careers than those without asthma. They had a small increased risk of limitations in daily activity attributable to respiratory health and of absence from work. In the majority, however, the differences amounted to only a few days per year.747 Young adults with asthma had a low awareness of occupations that might worsen asthma (for example exposure to dusts, fumes, sprays, exertion and temperature changes) and did not generally discuss career plans with their general practitioner. Further details about occupational asthma can be found in section 13.

 Clinicians should discuss future career choices with adolescents with asthma and highlight occupations that might increase susceptibility to work-related asthma symptoms.

11.8 NON-PHARMACOLOGICAL MANAGEMENT

11.8.1 TOBACCO SMOKING AND ENVIRONMENTAL EXPOSURE TO TOBACCO SMOKE

Exposure to passive smoking remains a significant health risk.

One study of asthma morbidity among urban young adolescents (mean approximately 11 years of age) found at baseline that 28% of caregivers reported exposure to environmental tobacco smoke (ETS) in the home and 19% reported exposure outside the primary household. Children who received a 20-minute educational intervention about ETS exposure and whose ETS exposure had decreased at follow up had fewer hospitalisations (p=0.034) and emergency department visits (p<0.001) reported in the next 12 months, as well as fewer episodes of poor asthma control (p=0.042).748

In a national survey in Denmark, 37.7% of adolescents with asthma smoked currently, 16.5% daily. Smoking was more common in girls. More of those with asthma smoked daily, smoked more cigarettes and had tried to quit smoking.749

Among adolescents, smoking is a risk factor for asthma.727,730–732 A longitudinal study of asthma and allergic disease in school children in Sweden found that both passive and active smoking were significantly related to asthma and wheeze in adolescents. Maternal ETS exposure was associated with lifetime symptoms, but daily smoking among the adolescents was more strongly related to current symptoms.753

Young people aged 12–17 years who have a strong commitment to quit smoking should be offered advice on how to stop and encouraged to use local NHS smoking cessation services by providing details of when, where and how to access them.

 Adolescents with asthma (and their parents and carers) should be encouraged to avoid exposure to environmental tobacco smoke, and should be informed about the risks and urged not to start smoking.

 Adolescents with asthma should be asked if they smoke personally. If they do and wish to stop, they should be offered advice on how to stop and encouraged to use local NHS smoking cessation services.
11.8.2 COMPLEMENTARY AND ALTERNATIVE MEDICINE

In a small study, 16% of Italian teenagers had used complementary and alternative medicine (CAM; homeopathy, acupuncture, herbal medicines). In a study in the USA, 80% of urban adolescents (aged 13–18 years) with asthma reported that they had used CAM, most commonly rubs, herbal teas, prayer and massage. While most adolescents used CAM with conventional asthma therapy, 27% reported they used it instead of prescribed therapy, suggesting that CAM use may be a marker of non-adherence to prescribed asthma treatment.

Healthcare professionals should be aware that complementary alternative medicine use is common in adolescents and should ask about its use.

11.9 PHARMACOLOGICAL MANAGEMENT

Specific evidence about the pharmacological management of adolescents with asthma is limited and is usually extrapolated from paediatric and adult studies. Recommendations for pharmacological management of asthma in children and adults can be found in section 7.

11.10 INHALER DEVICES

Specific evidence about inhaler device use and choice in adolescents is limited. Inhaler devices are covered in section 8.

Two small studies comparing two different types of inhalers in adolescents found that both DPIs and pMDIs plus spacer are of value in adolescent asthma. There were no differences between the two inhaler devices in terms of symptoms or lung function but patients preferred the DPI.

Although adolescents with asthma may be competent at using their inhaler devices, their actual adherence to treatment may be affected by other factors such as preference. In particular, many adolescents prescribed a pMDI with spacer do not use the spacers as they are felt to be too inconvenient.

Adolescent preference for inhaler device should be taken into consideration as a factor in improving adherence to treatment.

As well as checking inhaler technique it is important to enquire about factors that may affect inhaler device use in real life settings, such as school.

Consider prescribing a more portable device (as an alternative to a pMDI with spacer) for delivering bronchodilators when away from home.

11.11 ORGANISATION AND DELIVERY OF CARE

11.11.1 HEALTHCARE SETTING

Very little evidence was identified to determine the best healthcare setting to encourage attendance amongst adolescents with asthma.

A two-year follow-up study found that a multidisciplinary day programme improved asthma control in a group of adolescents with very severe asthma. This study involved a highly selected group of patients and a wide range of interventions and is not generalisable to most adolescents with asthma.
11.11.2 SCHOOLS AS A SETTING FOR HEALTHCARE DELIVERY AND ASTHMA EDUCATION

Some innovative approaches have used schools as a setting for asthma education and review. One focus has been on healthcare delivery, such as school-based clinics. Evidence from a single cluster randomised controlled trial suggests that school-based, nurse-led asthma clinics increase the uptake of asthma reviews in adolescents from 51% in practice care to 91%. Knowledge of asthma, inhaler techniques and positive attitudes increased and a majority of the adolescents preferred the setting, but there was no improvement in clinical outcomes. This may be because the nurses were not able to change or prescribe treatment (which relied on a separate visit to a doctor).

Other approaches have used schools as a setting for asthma education including peer-led education. In a single, well-conducted RCT peer-led education in schools improved quality of life, asthma control and days off school for adolescents with asthma. In a study in the USA, a randomised trial of a web-based tailored asthma management programme delivered using school computers found that, after 12 months, students reported fewer symptoms, school days missed, restricted-activity days, and hospitalisations for asthma than control students. The programme was inexpensive to deliver.

A number of countries, particularly Australia and New Zealand, have developed national programmes to ensure that schools can deliver appropriate first aid and emergency response to students with asthma as well as encouraging participation in sporting activities.

- School-based clinics may be considered for adolescents with asthma to improve attendance.
- Peer-led interventions for adolescents in the school setting should be considered.
- Integration of school-based clinics with primary care services is essential.

11.11.3 TRANSITION TO ADULT-BASED HEALTHCARE

Transition to adult services is important for all adolescents with asthma, irrespective of the asthma severity. No studies on transition of adolescents with asthma to adult services were identified although there are many studies looking at transition of adolescents with chronic illness. Few studies compare different approaches and many recommendations come from consensus statements rather than randomised controlled trials.

It is important that the process of transition is co-ordinated and it is recommended that a healthcare professional be identified to oversee transition and either link with a counterpart in adult services or remain involved until the young person is settled within adult services.

- In the initial period after transition to adult services in secondary care, adolescents are best seen by one consultant to build their confidence and encourage attendance.

11.11.4 PREPARATION FOR TRANSITION

Transition should be seen as a process and not just the event of transfer to adult services. It should begin early, be planned, involve the young person, and be both age and developmentally appropriate (see Table 15).
Table 15: Recommendations for organising transition services

<table>
<thead>
<tr>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young people should be given the opportunity to be seen without their parents/carers.</td>
</tr>
<tr>
<td>Transition services must address the needs of parents/carers whose role in their child's life is evolving at this time.</td>
</tr>
<tr>
<td>Transition services must be multidisciplinary and multiagency. Optimal care requires a co-operative working relationship between adult and paediatric services, particularly where the young person has complex needs with multiple specialty involvement.</td>
</tr>
<tr>
<td>Co-ordination of transitional care is critical. There should be an identified co-ordinator who supports the young person until he or she is settled within the adult system.</td>
</tr>
<tr>
<td>Young people should be encouraged to take part in transition/support programmes and/or put in contact with other appropriate youth support groups.</td>
</tr>
<tr>
<td>The involvement of adult physicians prior to transfer supports attendance and adherence to treatment.</td>
</tr>
<tr>
<td>Transition services must undergo continued evaluation.</td>
</tr>
</tbody>
</table>

11.12 PATIENT EDUCATION AND SELF MANAGEMENT

11.12.1 EDUCATION IN SELF MANAGEMENT

Section 5 covers self management, education and the components of a self-management programme.

Effective transition care involves preparing adolescents with asthma to take independent responsibility for their own asthma management and enabling them to be able to negotiate the health system effectively (see Table 16). Clinicians need to educate and empower adolescents to manage as much of their asthma care as they are capable of doing while supporting parents to gradually hand over responsibility for management to their child.

Table 16: Specific knowledge, attitudes and skills that underpin independent self-management practices in adolescents with asthma

<table>
<thead>
<tr>
<th>Skill/Ability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can name and explain their condition</td>
</tr>
<tr>
<td>Can list their medications, treatments or other management practices (eg special diet)</td>
</tr>
<tr>
<td>Can explain why each medication or management practice is necessary</td>
</tr>
<tr>
<td>Can remember to take their medications most of the time</td>
</tr>
<tr>
<td>Can answer questions asked of them by doctors or other healthcare professionals</td>
</tr>
<tr>
<td>Can ask questions of their doctor or other healthcare professional</td>
</tr>
<tr>
<td>Can arrange (and cancel) appointments</td>
</tr>
<tr>
<td>Can consult with a doctor or other healthcare professional without a parent/carer</td>
</tr>
<tr>
<td>Remembers to order more medication before it runs out</td>
</tr>
<tr>
<td>Can have prescriptions filled at the pharmacy</td>
</tr>
<tr>
<td>Develops the desire for their healthcare to be independent of their parents/carers</td>
</tr>
<tr>
<td>Can prioritise their health over (some) other desires</td>
</tr>
</tbody>
</table>
For adolescents with asthma, the available evidence about self management is mainly qualitative and provides insight about the concerns adolescents have about their asthma and its management. Adolescents with asthma report embarrassment over using inhalers in front of others, sadness over not being able to take part in normal activities, frustration and anger at the way they are treated by their families (for example being limited in what they are allowed to do, being fussed over by parents). They also report specific anxieties around fear of dying and feeling guilty over the effect their illness has on the rest of the family. They are concerned about needing to rely on someone else when they have a bad asthma attack and that teachers do not know what to do. They stress the importance of support from friends at school, especially those with asthma.766,767

Studies of adolescents with chronic illness (including adolescents with asthma) have highlighted factors that adolescents feel are important in delivering education about self management to them.768 These included:

- education must be adapted to meet individual needs and repeated and developed as understanding and experience increases and should include emotional support for coping with feelings
- education should be delivered by educators that respect, engage, encourage and motivate the adolescents
- accompanying information, both written and oral, should be personalised rather than general and use non-medical language that adolescents can understand
- education should be delivered in an appropriate and uninterrupted setting and make appropriate use of information technology.

D Design of individual or group education sessions delivered by healthcare professionals should address the needs of adolescents with asthma.

11.12.2 ADHERENCE

Adherence with asthma treatment, and with asthma trigger avoidance, is often poor in adolescents. The evidence for poor adherence comes mainly from questionnaire-based and qualitative studies rather than objective electronic monitoring.769

When directly asked, most adolescents admit they do not always follow their treatment plans. Reasons for not adhering include both unintentional reasons (confusion about medications and forgetfulness) and intentional reasons (inhaled being ineffective/hard to use, treatment plan too complicated, more important things to do, concern about adverse effects, denial, can’t be bothered and embarrassment).759,770

Background factors, such as younger age, family size, exercise and not smoking or drinking alcohol as well as disease-related factors such as sense of normality, energy and will-power, support from the parents, physicians and nurses, and a positive attitude towards the disease and treatment were related to good reported adherence.771

Non-adherence to medication regimens in adolescents has been linked to other health-risk behaviours including tobacco, alcohol and drug use and also to depression.772 Not only are specific behaviours such as smoking, poor adherence to medication regimens or medical review appointments detrimental to asthma control, they also have been highlighted as potential beacons of distress in adolescents.773
Clinical tools such as the Home, Education/Employment, Activities, Drugs, Sexuality, Suicide/depression adolescent health screen provide practitioners with an easily usable psychosocial screen.774

Strategies to improve adherence in adolescents emphasise the importance of focusing on the individual and their lifestyle and using individualised asthma planning and personal goal setting.775 One study found that once-daily supervised asthma preventer therapy at school improved asthma control and quality of life.776
12 Asthma in pregnancy

12.1 NATURAL HISTORY AND MANAGEMENT OF STABLE ASTHMA

The majority of women with asthma have normal pregnancies and the risk of complications is small in those with well-controlled asthma. Several physiological changes occur during pregnancy that could worsen or improve asthma, but it is not clear which, if any, are important in determining the course of asthma during pregnancy. Pregnancy can affect the course of asthma and asthma and its treatment can affect pregnancy outcomes.

12.1.1 COURSE OF ASTHMA IN PREGNANCY

The natural history of asthma during pregnancy is extremely variable. In a prospective cohort study of 366 pregnancies in 330 women with asthma, the asthma worsened during pregnancy in 35%.777 A prospective cohort study of 1,739 pregnant women showed an overall improvement in 23% and deterioration in 30.3%.778 The conclusions of a meta-analysis of 14 studies is in agreement with the commonly quoted generalisation that during pregnancy about one third of asthma patients experience an improvement in their asthma, one third experience a worsening of symptoms, and one third remain the same.779 There is also some evidence that the course of asthma is similar in successive pregnancies.777,780 A systematic review showed no effect of pregnancy or stage of pregnancy on FEV1.

Studies suggest that 11–18% of pregnant women with asthma will have at least one emergency department visit for acute asthma and of these 62% will require hospitalisation.782,783 Severe asthma is more likely to worsen during pregnancy than mild asthma,777 but some patients with very severe asthma may experience improvement, whilst symptoms may deteriorate in some patients with mild asthma. In a large study in the USA, the rates of asthma attack were 13%, 26% and 52% in those with mild, moderate and severe asthma respectively.778 The corresponding rates of hospitalisation were 2%, 7% and 27%.

A systematic review concluded that, if symptoms do worsen, this is most likely in the second and third trimesters, with the peak in the sixth month.780 In a large cohort study, the most severe symptoms were experienced by patients between the 24th and 36th week of pregnancy. Thereafter symptoms decreased significantly in the last four weeks and 90% had no asthma symptoms during labour or delivery. Of those who did, only two patients required anything more than inhaled bronchodilators.777 A further study has confirmed the observation that the last month of pregnancy is the one in which patients are least likely to have an asthma attack.784
12.1.2 EFFECT OF ASTHMA IN PREGNANCY

A systematic review has shown that baseline asthma severity does determine what happens to the course of asthma in pregnancy and asthma may affect the risk of adverse outcomes. A cohort study comparing 198 pregnant women with asthma to 198 women without asthma reported that non-atopic patients with asthma tend to have more severe asthma. Pre-eclampsia was also more common in this group. However with adequate surveillance and treatment, pregnancy and delivery complications can be avoided.

Uncontrolled asthma is associated with many maternal and fetal complications, including hyperemesis, hypertension, pre-eclampsia, vaginal haemorrhage, complicated labour, fetal growth restriction, pre-term birth, increased perinatal mortality, and neonatal hypoxia. A large Swedish population-based study using record linkage data demonstrated increased risks for pre-term birth, low birth weight, perinatal mortality and pre-eclampsia in women with asthma. The risks for pre-term delivery and low birth weight were higher in women with more severe asthma necessitating admission.

A large prospective cohort study comparing women with moderate and severe asthma with women without asthma found the only significant difference was an increased Caesarean section rate (OR 1.4, 95% CI 1.1 to 1.8). Logistic regression analysis of the severe group showed an increased risk of gestational diabetes (adjusted odds ratio (AOR) 3, 95% CI 1.2 to 7.8) and pre-term delivery <37 weeks AOR 2.2, 95% CI 1.2 to 4.2) but this could have been an effect of corticosteroids. In the Yale asthma study no effect of asthma symptoms or severity was seen on pre-term delivery but oral steroids increased the rate of pre-term delivery and reduced gestation by 2.2 weeks (AOR 1.05, 95% CI 1.01 to 1.09). Daily asthma symptoms were associated with an increased risk of fetal growth restriction (AOR 2.25, 95% CI 1.25 to 4.06) and there was a 24% increase with each increased symptom step. This is supported by a systematic review of four studies that concluded asthma exacerbation in pregnancy increases the risk of low birth weight. The RR was 2.54 (95% CI 1.52 to 4.25) compared to women without asthma. In a large cohort study of 2,123 women with asthma, there was an association of both mean FEV₁ and mean FEV₁ <80% predicted with gestational hypertension, preterm delivery <37 weeks and <32 weeks, and low birth weight.

In contrast, if asthma is well controlled throughout pregnancy there is little or no increased risk of adverse maternal or fetal complications. Pregnancy should therefore be an indication to optimise therapy and maximise lung function in order to reduce the risk of acute asthma attacks.

C Monitor pregnant women with moderate/severe asthma closely to keep their asthma well controlled.

B Women should be advised of the importance of maintaining good control of their asthma during pregnancy to avoid problems for both mother and baby.

✓ Advise women who smoke about the dangers for themselves and their babies and give appropriate support to stop smoking.
12.2 MANAGEMENT OF ACUTE ASTHMA IN PREGNANCY

The management of acute asthma in pregnancy may be affected by concerns about harmful effects of medication on the fetus. In a prospective controlled study of 51 pregnant women and 500 non-pregnant women presenting with acute asthma to an emergency department in Boston, USA, pregnant patients with asthma were less likely to receive appropriate treatment with steroids and, as a result, were more likely to experience ongoing asthma attacks at two weeks. Available studies give little cause for concern regarding treatment side effects and the maternal and fetal risks of uncontrolled asthma are much greater than the risks from using conventional asthma medications for management of acute asthma. In the five confidential enquiries into maternal deaths in the UK (covering 1994–2008) there were 22 deaths from asthma. The recent report from the Intensive Care National Audit and Research Centre on female admissions to adult critical care units in England, Wales and Northern Ireland between 2009 and 2012 found that of 1,188 currently pregnant women, 94 (8%) were admitted with acute asthma and of 5,605 postpartum women, 32 (0.6%) were admitted with acute asthma.

Oxygen should be delivered to maintain saturation 94–98% in order to prevent maternal and fetal hypoxia. When interpreting arterial blood gases in pregnancy it should be remembered that the progesterone-driven increase in minute ventilation may lead to relative hypocapnia and a respiratory alkalosis, and higher PaO₂ but oxygen saturations are unaltered. Acidosis is poorly tolerated by the fetus.

Drug therapy should be given as for a non-pregnant patient with acute asthma, including nebulised β₂ agonists and early administration of steroid tablets (see section 9). In severe cases, intravenous β₂ agonists, aminophylline, or intravenous bolus magnesium sulphate can be used as indicated.

Continuous fetal monitoring should be performed when asthma is uncontrolled or severe, or when fetal assessment on admission is not reassuring. Consideration should be given to early referral to critical care services as impaired ventilatory mechanics in late pregnancy can lower functional residual capacity and may result in earlier oxygen desaturation. Pregnant women may be more difficult to intubate due to anatomical changes especially if they have pre-eclampsia.

C Give drug therapy for acute asthma as for non-pregnant patients including systemic steroids and magnesium sulphate.

D Deliver high-flow oxygen immediately to maintain saturation 94–98%.

D Acute severe asthma in pregnancy is an emergency and should be treated vigorously in hospital.

✔ Continuous fetal monitoring is recommended for pregnant women with acute severe asthma.

✔ For women with poorly-controlled asthma during pregnancy there should be close liaison between the respiratory physician and obstetrician, with early referral to critical care physicians for women with acute severe asthma.
12.3 DRUG THERAPY IN PREGNANCY

In general, the medicines used to treat asthma are safe in pregnancy. A large UK population-based case-control study found no increased risk of major congenital malformations in children of women receiving asthma treatment in the year before or during pregnancy. The risk of harm to the fetus from severe or chronically undertreated asthma outweighs any small risk from the medications used to control asthma.

B Counsel women with asthma regarding the importance and safety of continuing their asthma medications during pregnancy to ensure good asthma control.

12.3.1 β2 AGONISTS

No significant association has been demonstrated between major congenital malformations or adverse perinatal outcome and exposure to short-acting β2 agonists. A prospective study of 259 pregnant patients with asthma who were using bronchodilators compared with 101 pregnant patients with asthma who were not, and 295 control participants, found no differences in perinatal mortality, congenital abnormalities, prematurity, mean birth weight, Apgar scores or labour/delivery complications. A case-control study including 2,460 infants exposed to short-acting β2 agonists found no increased risk of congenital malformations in exposed infants.

With regard to LABAs, evidence from prescription event monitoring suggests that salmeterol is safe in pregnancy and although there are some data on formoterol, numbers are small. A systematic review of studies including 190 exposures to LABA demonstrated no increased risk of congenital malformations, pre-term delivery or pre-eclampsia. A case control study including 156 infants exposed to LABA found no increased risk of major congenital malformations. As in other settings, LABAs should be used with an ICS, ideally as a combination product.

Data on the use of combination products in pregnancy are limited although there are no theoretical reasons why these would be more harmful than the same agents given separately. There are some safety data for seretide (salmeterol/fluticasone propionate) but with small numbers.

C Use short acting β2 agonists as normal during pregnancy.

C Use long acting β2 agonists (LABA) as normal during pregnancy.

12.3.2 INHALED CORTICOSTEROIDS

No significant association has been demonstrated between major congenital malformations or adverse perinatal outcome and exposure to ICS. A meta-analysis of four studies of ICS use in pregnancy showed no increase in the rate of major malformations, pre-term delivery, low birth weight or pregnancy-induced hypertension. The UK case-control study included 1,429 infants exposed to ICSs and found no increased risk of major congenital malformations.
Inhaled anti-inflammatory treatment has been shown to decrease the risk of an acute attack of asthma in pregnancy and the risk of readmission following an asthma attack. A randomised placebo controlled trial of inhaled beclometasone versus oral theophylline in moderate asthma in pregnancy showed no difference in the primary outcome of one or more asthma attacks resulting in medical intervention, but inhaled beclometasone was better tolerated.

B Use inhaled corticosteroids as normal during pregnancy.

12.3.3 THEOPHYLLINES

No significant association has been demonstrated between major congenital malformations or adverse perinatal outcome and exposure to methylxanthines. For women requiring theophylline to maintain asthma control, measurement of theophylline levels is recommended. Since protein binding decreases in pregnancy, resulting in increased free drug levels, a lower therapeutic range is probably appropriate.

C Use oral and intravenous theophyllines as normal during pregnancy.

D Check blood levels of theophylline in pregnant women with acute severe asthma and in those critically dependent on therapeutic theophylline levels.

12.3.4 STEROID TABLETS

There is much published literature showing that steroid tablets are not teratogenic, but there is a slight concern that they may be associated with oral clefts. Data from several studies have failed to demonstrate this association with first trimester exposure to steroid tablets. One case control study, however, found a significant association, although this increase is not significant if only paired controls are considered. Although one meta-analysis reported an increased risk, a prospective study by the same group found no difference in the rate of major birth defects in prednisolone-exposed and control babies. A more recent population-based case-control study revealed a crude odds ratio of corticosteroid exposure from four weeks before through to 12 weeks after conception of 1.7 (95% CI, 1.1 to 2.6) for cleft lip. Another case-control study including 262 exposed infants found no such association, although this was not limited to first trimester exposure.

The association is therefore not definite and even if it is real, the benefit to the mother and the fetus of steroids for treating a life-threatening disease justify the use of steroids in pregnancy. Moreover, the various studies of steroid exposure include many patients with conditions other than asthma, and the pattern of steroid use was generally as a regular daily dose rather than as short courses, which is how asthma patients would typically receive oral steroids.

Prednisolone is extensively metabolised by placental enzymes so only 10% reaches the fetus, making this the oral steroid of choice to treat maternal asthma in pregnancy. Pregnant women with acute asthma attacks are less likely to be treated with steroid tablets than non-pregnant women. Failure to administer steroid tablets when indicated increases the risk of ongoing asthma attacks and therefore the risk to the mother and her fetus.
Some studies have found an association between steroid tablet use and pregnancy-induced hypertension or pre-eclampsia, pre-term labour and fetal growth but severe asthma may be a confounding variable.

C Use steroid tablets as normal when indicated during pregnancy for women with severe asthma. Steroid tablets should never be withheld because of pregnancy. Women should be advised that the benefits of treatment with oral steroids outweigh the risks.

12.3.5 LEUKOTRIENE RECEPTOR ANTAGONISTS

Data regarding the safety of LTRAs in pregnancy are limited. A case-control study with 96 cases exposed to LTRAs found no increased risk of major malformations between women with asthma exposed to LTRA and women with asthma taking only β₂ agonists. A systematic review found no increased risk of malformations or pre-term delivery in nine exposed women. Three studies looking at infant outcomes in women exposed to LTRAs (two in women taking montelukast) showed no increased risk of congenital malformations.

C If leukotriene receptor antagonists are required to achieve adequate control of asthma then they should not be withheld during pregnancy.

12.3.6 SODIUM CROMOGlicate AND NEDOCROMIL SODIUM

No significant association has been demonstrated between major congenital malformations or adverse perinatal outcome and exposure to sodium cromoglicate and nedocromil sodium.

C Use sodium cromoglicate and nedocromil sodium as normal during pregnancy.

12.3.7 IMMUNOMODULATION THERAPY

There are as yet no clinical data on the use of omalizumab for moderate-severe allergic asthma in pregnancy.

12.4 MANAGEMENT DURING LABOUR

Acute attacks of asthma are very rare in labour, perhaps due to endogenous steroid production. In women receiving steroid tablets there is a theoretical risk of maternal hypothalamic-pituitary-adrenal axis suppression. Women with asthma may safely use all forms of usual labour analgesia.

In some studies there is an association between asthma and an increased Caesarean section rate, but this may be due to planned Caesarean sections or inductions of labour rather than due to any direct effect of asthma on intrapartum indications. A large prospective cohort study comparing women with moderate and severe asthma with women without asthma found the only significant difference was an increased Caesarean section rate (OR 1.4, 95% CI 1.1 to 1.8).
Data suggest that the risk of postpartum asthma attacks is increased in women having Caesarean sections. This may relate to the severity of their asthma rather than to the Caesarean section, or to factors such as postoperative pain with diaphragmatic splinting, hypoventilation and atelectasis. Prostaglandin E2 may safely be used for labour inductions. Prostaglandin F2α (carboprost/hemobate®) used to treat postpartum haemorrhage due to uterine atony may cause bronchospasm. Although ergometrine may cause bronchospasm particularly in association with general anaesthesia, this is not a problem encountered when syntometrine (syntocinon/ergometrine) is used for postpartum haemorrhage prophylaxis.

Although suppression of the fetal hypothalamic-pituitary-adrenal axis is a theoretical possibility with maternal systemic steroid therapy, there is no evidence from clinical practice or the literature to support this.

- Advise women that an acute asthma attack is rare in labour.
- Advise women to continue their usual asthma medications in labour.
- In the absence of an acute severe asthma attack, reserve Caesarean section for the usual obstetric indications.

If anaesthesia is required, regional blockade is preferable to general anaesthesia in women with asthma.

Women receiving steroid tablets at a dose exceeding prednisolone 7.5 mg per day for more than two weeks prior to delivery should receive parenteral hydrocortisone 100 mg 6–8 hourly during labour.

Use prostaglandin F2α with extreme caution in women with asthma because of the risk of inducing bronchoconstriction.

12.5 DRUG THERAPY FOR BREASTFEEDING MOTHERS

The medicines used to treat asthma, including steroid tablets, have been shown in early studies to be safe to use in breastfeeding mothers. There is less experience with newer agents. Less than 1% of the maternal dose of theophylline is excreted into breast milk.

Prednisolone is secreted in breast milk, but milk concentrations of prednisolone are only 5–25% of those in serum. The proportion of an oral or intravenous dose of prednisolone recovered in breast milk is less than 0.1%. For maternal doses of at least 20 mg once or twice daily the nursing infant is exposed to minimal amounts of steroid with no clinically significant risk.

- Encourage women with asthma to breastfeed.
- Use asthma medications as normal during lactation, in line with manufacturers’ recommendations.
13 Occupational asthma

13.1 INCIDENCE

The true frequency of occupational asthma is not known, but under-reporting is likely. Published reports, which come from surveillance schemes, compensation registries or epidemiological studies, estimate that occupational asthma may account for about 9–15% of adult onset asthma. It is now the commonest industrial lung disease in the developed world with over 400 reported causes.

The diagnosis should be suspected in all adults with symptoms of airflow limitation, and positively searched for in those with high-risk occupations or exposures. Patients with pre-existing asthma aggravated non-specifically by dust and fumes at work (work-aggravated asthma) should be distinguished from those with pre-existing asthma who become additionally sensitised to an occupational agent.

In patients with adult onset, or reappearance of childhood asthma, healthcare professionals should consider that there may be an occupational cause.

13.2 AT-RISK POPULATIONS

Several hundred agents have been reported to cause occupational asthma and new causes are reported regularly in the medical literature.

The most frequently reported causative agents include isocyanates, flour and grain dust, colophony and fluxes, latex, animals, aldehydes and wood dust.

The workers most commonly reported to occupational asthma surveillance schemes include paint sprayers, bakers and pastry makers, nurses, chemical workers, animal handlers, welders, food processing workers and timber workers.

Workers reported to be at increased risk of developing asthma include bakers, food processors, forestry workers, chemical workers, plastics and rubber workers, metal workers, welders, textile workers, electrical and electronic production workers, storage workers, farm workers, waiters, cleaners, painters, dental workers and laboratory technicians.

13.3 DIAGNOSIS

Occupational asthma should be considered in all workers with symptoms of airflow limitation (see Annex 9). The best screening question to ask is whether symptoms improve on days away from work. This is more sensitive than asking whether symptoms are worse at work, as many symptoms deteriorate in the hours after work or during sleep. Asthma symptoms reported by the use of a questionnaire to be better on days away from work have been shown to have a sensitivity of 58–100% for subsequently validated occupational asthma and specificities of between 45–100%, with wheeze and shortness of breath the most commonly reported symptoms. There is also some evidence, that free histories taken by experts may have a higher sensitivity than patient questionnaires administered by experts, but their specificity may be lower for a diagnosis of occupational asthma.

One study notes a relatively low positive predictive value of work related symptoms.
Adults with airflow obstruction should be asked:

- Are you better on days away from work?
- Are you better on holiday?

Those with positive answers should be investigated for occupational asthma.

Occupational asthma can be present when tests of lung function are normal, limiting their use as a screening tool. Asthmatic symptoms improving away from work can produce false negative diagnoses, so further validation is needed.

Serial measurement of peak respiratory flow is the most readily available initial investigation, and the sensitivity and specificity of serial peak flow measurement in the diagnosis of occupational asthma are high.\(^7\)\(^8\)

Although skin-prick tests or blood tests for specific IgE are available, there are few standardised allergens commercially available which limits their use. A positive test denotes sensitisation, which can occur with or without disease. The diagnosis of occupational asthma can usually be made without specific bronchial provocation testing, considered to be the gold standard diagnostic test. The availability of centres with expertise and facilities for specific provocation testing is very limited in the UK and the test itself is time consuming.

As a general observation, the history is more useful in excluding occupational asthma than in confirming it. A significant proportion of workers with symptoms that improve on days away from work or on holiday have been shown by objective tests not to have occupational asthma.\(^9\)

In suspected work-related asthma, the diagnosis of asthma should be confirmed using standard objective criteria.

13.3.1 Sensitivity and Specificity of Serial Peak Flow Measurements

In a meta-analysis of 31 studies in which a variety of reference standards were used, the pooled sensitivity and specificity of serial PEF measurements were 75% and 79% respectively. Higher values (82% and 88%) were obtained from pooling studies where more complete series of measurements had been made, achieved by 61% of the analysed population. Visual analysis was more sensitive (78% v 71%) but less specific (69% v 91%) than computer-based methods.\(^8\)

There are several validated methods for interpreting serial PEF records for a diagnosis of occupational asthma which differ in their minimal data requirements. The original discriminant analysis method requires:

- at least three days in each consecutive work period
- at least four evenly spaced readings per day
- at least three series of consecutive days at work with three periods away from work (usually about three weeks).\(^8\)

Shorter records without the requirement for three consecutive days at work can be analysed using the area between curves score. This requires at least eight readings a day on eight work days and three rest days.\(^8\) A statistical method using the addition of timepoint analysis requires the waking time to be similar on rest and work days.\(^8\)
The analysis is best done with the aid of a criterion-based expert system. Suitable record forms and support are available from www.occupationalasthma.com

D Objective diagnosis of occupational asthma should be made using serial peak flow measurements, with at least four readings per day.

13.3.2 DIAGNOSIS OF VALIDATED CASES OF OCCUPATIONAL ASTHMA USING IgE TESTING

A review by the British Occupational Health Research Foundation states that, “...the respective sensitivities and specificities of the ability of skin-prick or serological tests to detect specific IgE vary between allergens and depend on the setting of positive cut-offs.” 869 The sensitivities and specificities of serum specific IgE antibodies to low molecular weight agents depends on whether the antibodies have been properly characterised and the availability of appropriate hapten-conjugates. The presence of specific IgE confirms sensitisation but alone does not confirm the presence of occupational asthma, nor necessarily its cause. 869 The review concluded that skin-prick testing or tests for specific IgE should be used in the investigation of occupational asthma caused by high molecular weight agents but are less sensitive for detecting specific IgE and occupational asthma caused by low molecular weight agents. In neither case are the tests specific for diagnosing asthma. 869

D Skin-prick testing or tests for specific IgE should be used in the investigation of occupational asthma caused by high molecular weight agents.

D Skin-prick testing or tests for specific IgE should not be used in the investigation of occupational asthma caused by low molecular weight agents.

13.3.3 NON-SPECIFIC REACTIVITY

Studies of non-specific reactivity are confounded by the different methods used, different cut-offs for normality and the interval between last occupational exposure and the performance of the test (an increase in time interval may allow recovery of initial hyper-reactors). A single measurement of non-specific reactivity has been shown to have only moderate specificity and sensitivity for the validation of occupational asthma and changes in non-specific reactivity at and away from work alone have only moderate sensitivity and specificity for diagnosis. 869,883

D A single measurement of non-specific reactivity should not be used for the validation of occupational asthma.

13.3.4 SPECIFIC BRONCHIAL PROVOCATION TESTING

Specific inhalation challenges (SIC) with occupational agents should only be carried out in hospitals with expertise in using occupational agents, and should always include: a control challenge on a separate day; a gradual increase of exposure to the suspected occupational agent; close monitoring of airway calibre during the challenge and for at least six hours after the end of the exposure. 864 When carrying out specific challenge testing, an increased duration of allergen exposure may increase the overall diagnostic sensitivity of the tests. 865
A positive SIC is one in which the FEV₁ falls by ≥15% from baseline, either within the first hour after exposure (an immediate reaction) or later (a late reaction) or both. Alternatively for late reactions, two measurements below the 95% CI for three days away from exposure have been validated as a positive test. Equivocal reactions can sometimes be clarified by finding changes in non-specific bronchial responsiveness, sputum eosinophils or exhaled nitric oxide. SIC is generally a safe procedure; excessive reactions are rare with <3% of patients needing repeated doses of a bronchodilator and steroid treatment.

The sensitivity and specificity of SIC are high but not easily quantified as the method is usually used as the reference standard for the diagnosis of occupational asthma. False negative tests also occur, and SIC testing may be of less value where complex workplace exposures cannot be replicated in the laboratory. SIC remains the gold standard for making a diagnosis of occupational asthma.

13.3.5 SPUTUM EOSINOPHILIA

Eosinophilic bronchial inflammation can be assessed by cell counts in fresh sputum, induced by inhaling hypertonic saline. Studies have shown that induced sputum eosinophilia is not sufficiently sensitive or specific to help in the diagnosis of occupational asthma although it may help in the interpretation of equivocal SIC reactions. In the clinical setting the absence of sputum eosinophilia does not exclude a diagnosis of occupational asthma.

13.3.6 EXHALED NITRIC OXIDE

The 2010 review by the British Occupational Health Research Foundation states that, "...the measurement of exhaled nitric oxide produced by inflammatory and epithelial cells in the respiratory tract is non-invasive and has been studied extensively in non-occupational asthma, although it has not been fully validated as an effective diagnostic test for occupational asthma". The review concluded that the role of exhaled nitric oxide measurements in the diagnosis of occupational asthma in this setting is not established.

13.3.7 EXHALED BREATH CONDENSATE

Exhaled breath condensate may offer assistance in those undergoing diagnostic testing for occupational asthma. Its definitive utility is not yet understood.

13.4 MANAGEMENT OF OCCUPATIONAL ASTHMA

The aim of management is to identify the cause, remove the worker from exposure, and for the worker to have worthwhile employment.

Complete avoidance of exposure may or may not improve symptoms and bronchial hyper-responsiveness. Both the duration of continued exposure following the onset of symptoms and the severity of asthma at diagnosis may be important determinants of outcome. Early diagnosis and early avoidance of further exposure, either by relocation of the worker or substitution of the hazard offer the best chance of complete recovery. Workers who remain in the same job and continue to be exposed to the same causative agent after diagnosis are unlikely to improve and symptoms may worsen. The likelihood of improvement or resolution of symptoms or of preventing deterioration is greater in workers who have no further exposure to the causative agent.
Several studies have shown that the prognosis for workers with occupational asthma is worse for those who remain exposed for more than one year after symptoms develop, compared with those removed earlier.899-901

D Relocation away from exposure should occur as soon as diagnosis is confirmed, and ideally within 12 months of the first work-related symptoms of asthma.

There is consistent evidence from clinical and workforce case series that about one third of workers with occupational asthma are unemployed after diagnosis. It is unclear whether this risk is higher than that for other adults with asthma.902-904 The risk of unemployment may fall with increasing time after diagnosis.905 There is consistent evidence that loss of employment following a diagnosis of occupational asthma is associated with loss of income. Adults with occupational asthma may find employment more difficult than adults with non-occupational asthma.903,904 Approximately one third of workers with occupational asthma have been shown to be unemployed up to six years after diagnosis.901-909
14 Organisation and delivery of care

14.1 CARE PATHWAYS

Clinical care pathways are “...structured multidisciplinary care plans used by health services to detail essential steps in the care of patients with a specific clinical problem. They aim to link evidence to practice and optimise clinical outcomes whilst maximising clinical efficiency.”

There is little high-quality evidence from randomised trials addressing the impact of care pathways for asthma. Pathways have usually been implemented through a training session or programme. Two interventions, one to establish pathways for the management of people with high-risk asthma in UK primary care, the other to establish pathways for children with acute and chronic asthma in New Zealand primary care, led to non-significant reductions in ED attendance and hospitalisation. Pathways for inpatient care can improve processes of care, such as prescription of oral prednisolone and use of written asthma action plans in children, and can reduce length of stay for children, but have not improved follow up in general practice after discharge.

Further well-conducted studies are needed to define the benefits of care pathways for asthma. These should include large suitably powered studies to clarify the impact of pathways promoting systematic management of people with high-risk asthma in UK primary care, and pathways integrating asthma care across the primary/secondary care interface.

14.2 EDUCATING CLINICIANS

There is strong evidence that educating clinicians can improve health outcomes for patients. Two large Cochrane systematic reviews (covering all clinical conditions, not just asthma) found that:

- educational outreach visits (for example training visits to general practices) lead to small to moderate improvements in outcomes
- mixed interactive and didactic education is more effective than either alone.

Several models of clinician education specifically for asthma have been tested in randomised trials and these broadly support the conclusions of the two Cochrane reviews. The most consistently effective of these for asthma comprises educational outreach visits which deliver multifaceted training, based on theoretical models of behaviour change, including training in consultation styles and delivery of key messages. Several studies have tested the American-developed Physician Asthma Care Education (PACE) paediatric asthma programme, or adaptations of it for Australian and UK practice, and have shown reductions in ED visits, improved symptom control, and increased use of written asthma action plans. The PACE intervention has not been tested for adult populations and there is little experience of its use in the UK.

In the USA, peer education comprising intensive training of a ‘practice asthma champion’ who in turn trained and supported colleagues, led to fewer asthma attacks in children. Practice asthma champions were trained in pharmacotherapy and physician behaviour change techniques, and received ongoing support for their role as a ‘change agent’. They received guideline summaries, key targets for their physician colleagues and feedback on their colleagues’ performance along with monthly support from a nurse co-ordinator. When this peer education programme was combined with intensively trained outreach nurses implementing patient reviews (the Planned Care Model), children experienced fewer asthma symptoms and fewer asthma attacks.
These interventions illustrate that, to effect change, interventions need to be of sufficient intensity to engage with, and change, the way practices are organised.

Less intensive educational interventions, such as brief outreach visits comprising simple group education are less effective, showing no impact on symptoms, quality of life, or healthcare use. Remote IT educational interventions, such as remote spirometry training, may be effective but have not been widely tested.

Further large-scale studies, carried out in the UK, are needed to test the impact of intensive educational interventions, such as adapted PACE and peer education programmes.

Training for primary care clinicians should include educational outreach visits using multifaceted programmes that include consultation training, including goal setting.

14.3 ASTHMA CLINICS

14.3.1 STRUCTURED REVIEW

Proactive clinical review of people with asthma improves clinical outcomes. Evidence for benefit is strongest when reviews include discussion and use of a written PAAP. Benefits include reduced school or work absence, reduced asthma attack rate, improved symptom control and reduced attendance at the emergency department. Proactive structured review, as opposed to opportunistic or unscheduled review, is associated with reduced rates of asthma attack and days lost from normal activity. It is difficult to be prescriptive about the frequency of review as need will vary with the severity of the disease. Outcome is probably similar whether a practice nurse, or a general practitioner conducts the review. Clinicians trained in asthma management achieve better outcomes for their patients.

In primary care, people with asthma should be reviewed regularly by a nurse or doctor with appropriate training in asthma management. Review should incorporate a written action plan

It is good practice to audit the percentage of patients reviewed annually. Consider focusing on particular groups such as those overusing bronchodilators, patients on higher dose therapies, those with asthma attacks or from groups with more complex needs.

14.3.2 PRIMARY CARE ASTHMA CLINICS

Primary care asthma clinics can be defined as a “...proactive system of care sited in primary care (eg GP clinic) which occupies a defined and often regular clinical session for the routine review of patients with asthma.”

Within primary care, structured reviews may be delivered as appointments in routine surgeries, or within dedicated asthma clinics.
One systematic review which included three small studies of the asthma clinic model, showed no evidence of improvement in important outcomes such as hospitalisation, ED attendances, or quality of life, although there was a reduction in night-time waking, and no evidence that clinics were cost effective. The poor quality of the included studies led the review to conclude that there was a lack of evidence to inform the best way to organise structured asthma care in practice.

There is, however, no evidence that these clinics do harm. Asthma reviews in primary care may best be carried out, however, during routine surgeries rather than a dedicated asthma clinic.

14.3.3 SPECIALIST ASTHMA CLINICS

The evidence for whether specialist asthma clinics improve outcomes for people with severe or difficult asthma was limited to one systematic review, including 17 studies, many of poor quality and underpowered. The review focused on psychoeducational interventions mostly for adults and adolescents (16 and above) with difficult or severe asthma, so provided incomplete evidence on the ideal content of such clinics. The review found that these interventions reduced hospitalisations (but not ED attendances) in adults and children, and improved symptoms in children. The authors concluded that the strength of evidence was insufficient to change practice.

Further trials testing the impact of clinics run by specialists in asthma care are needed.

Consider including psychoeducational interventions in clinics for adults and children with difficult asthma.

14.4 TELEHEALTHCARE

Terminology in this rapidly evolving area is changing and is used inconsistently in the literature and in practice. In this guideline, ‘telehealthcare’ is used as an overarching term for all technology-enabled healthcare. Within this, telemonitoring implies collection and transfer of patient data; teleconsultation is the use of technology to enable remote consultation between a patient and a clinician; and telemedicine is interprofessional consultation.

14.4.1 SUPPORTING SELF MANAGEMENT

Telehealthcare embraces a range of functionalities which target different aspects of self-management behaviour including automated medication reminders to improve adherence, educational ‘games’ to improve knowledge, or effect behavioural change, and telemonitoring with various levels of professional oversight to support self management. These functions may use different IT modalities (text messaging, automated telephone calls, ‘apps’, computer games, cloud-based electronic health records) and may be delivered in different contexts (primary/community care, hospital outpatients, school based) which may influence their impact. In the fast moving context of telehealthcare, the aim of the intervention and the theoretical underpinning is likely to be more important to interpreting the evidence than details of the mode of delivery.
Automated reminders to improve adherence

In the short term, and in the context of a clinical trial, automated reminders (delivered by text messaging, alarms, or automated telephone calls) can improve adherence to medication, but do not have an impact on clinical outcomes. As part of more complex telehealthcare interventions, reminders may contribute to improved adherence to monitoring or medication use.

Computer-based educational games to improve knowledge or affect behaviour

Educational ‘games’ improved asthma knowledge in most, but not all participants in school-based interventions, and children attending a UK outpatients clinic. The latter study showed reduced school absenteeism and the number of steroid courses, but overall there is an inconsistent effect on clinical outcomes, and no impact on use of healthcare resources.

Games based on behavioural change theories have resulted in some improvement in self-management skills, although impact on symptoms and use of healthcare resources is variable. A generic health behaviour game which targeted teenagers with specific behavioural traits (such as rebelliousness, poor emotional support or low self esteem), improved asthma control, reduced absenteeism, and reduced admissions, but did not reduce ED attendances.

Telemonitoring to support self management

Telemonitoring, the transmission of monitoring data from a patient to an electronic health record which can be shared with (or monitored by) healthcare professionals, is promoted as having the potential to improve outcomes.

Some studies have demonstrated improvement in at least one clinical outcome, such as measures of asthma control, lung function, quality of life, reduced risk of activity limitation, and school absenteeism, exacerbations, and use of unscheduled care. Other trials, however, have shown no impact on asthma control or use of healthcare resources.

These interventions are heterogeneous, and the impact of the telemonitoring is likely to be strongly influenced by the demographic context (deprivation status and cultural background) and the level of professional support provided (frequency of monitoring, personalisation of feedback, access to case management support). People with poorly-controlled asthma have the potential to gain more by engaging with telemonitoring than those whose control is already optimal. Telehealthcare–supported self management offered no clinical benefits over traditionally delivered care that was already guideline standard.
Despite the heterogenous interventions, the overarching findings from the systematic reviews are consistent and show that telehealthcare:

- can improve process outcomes, such as knowledge, adherence to monitoring, self-efficacy/self-management skills, and increased use of preventer medication, at least in the short term
- has an inconsistent effect on clinical outcomes, such as symptoms, SABA use, lung function, school absenteeism, activity limitation, quality of life, and oral steroid courses
- generally has no effect on unscheduled use of healthcare resources, such as hospitalisations and ED attendances, out-of-hours consultations, and GP consultations
- has cost implications relating to providing and supporting telehealthcare services
- has no identified harms and whilst the telehealthcare intervention was often no better than usual care, there were no instances in which it was less effective.

Telehealthcare is a means of delivering care, not a panacea. Overall, clinical outcomes with telehealthcare are at least as good as, though not consistently superior to, traditionally delivered care. IT-based approaches may, therefore, be considered where organisational/clinical/social circumstances or clinician and patient preferences or convenience suggest they may be appropriate.

Telehealthcare may be considered as an option for supporting self management.

14.4.2 REMOTE CONSULTING

Remote consulting can be either asynchronous, with information exchanged sequentially, for example via email, text or web, or synchronous, with information exchange by, for example, telephone.

Evidence to support either approach in patients with asthma is very limited. Two systematic reviews of asynchronous remote consulting covering 15 RCTs and 52 mostly observational studies included only four studies addressing asthma, two of them RCTs, one of which was of poor quality. Although both reviews suggest that asynchronous telehealth led to significant reductions in healthcare use and some improvement in disease status (for example HbA1c in diabetes), the evidence relating to asthma is limited and of low quality and no conclusions can be drawn about its effectiveness in this patient group.

Evidence to support synchronous consulting in patients with asthma is also limited and, in general, did not address major outcomes of importance. Of four RCTs identified, two were considered to be of low methodological quality. There is some evidence to suggest that synchronous consulting can lead to improvements in parental QoL and equivalent health status to people reviewed in ‘traditional’ face-to-face consultations.

14.4.3 COMPUTERISED DECISION SUPPORT SYSTEMS

Computerised decision support systems (CDSS) can broadly be divided into systems targeted at healthcare professionals and integrated within the electronic health record, and web-based systems that are used by patients (and their healthcare professionals) to support self management.
A systematic review of eight RCTs considering the impact on asthma control of CDSS used by healthcare practitioners found little effect on patient outcomes because the healthcare practitioners rarely used the CDSS being evaluated and when used, rarely followed the advice given. Future CDSS need to align better with professional workflows so that pertinent and timely advice is easily accessible within the consultation. The authors concluded that integration of CDSS into electronic health records is cumbersome and a major factor in their ineffectiveness.948

A second review of 19 RCTs concluded that CDSS can improve chronic disease processes and outcomes. This conclusion, however, reflects the inclusion of four trials of systems used by patients to promote self management, three of which reported improved asthma control or QoL, although one, with a high risk of bias, improved symptoms and QoL but led to increased unscheduled care.949

14.5 SCHOOL-BASED INTERVENTIONS

Most school-based asthma interventions focus on education delivered by adults (usually healthcare professionals) to school children.163 Other approaches include peer education, whereby students are trained and then, in turn, train their peers,761,950 web-based programmes,183 or directly observed therapy with ICS medication,776 which may additionally include education of parents.951 One study tested a multifaceted intervention combining education of schoolchildren with additional training of their doctor, including provision of self-management plans.952 Most evaluations have been based in the USA, often involving minority ethnic groups not directly applicable to the UK.

Education for children in schools generally led to improvements in symptom control and quality of life, but had no impact on healthcare use.163 Peer education was effective for adolescents761 but not pre-teens.950 In two studies, directly observed therapy improved symptom control.776,951 Of all the school-based interventions tested, Bruzzese’s multifaceted programme had the most impact, improving symptoms, quality of life, emergency department use and hospitalisation.952

B Consider a multifaceted approach to school-based asthma education programmes targeting children’s healthcare professionals as well as the children themselves.

14.6 ETHNICITY/CULTURE-BASED INTERVENTIONS

The majority of studies examining ethnicity and culture-based interventions that tailor asthma education for people from minority ethnic groups have been carried out in the USA. Further details on the aspects of tailoring can be found in section 5.3.5.

A review of system level interventions concluded that the most effective at reducing further healthcare use were those targeted at people who had attended emergency care or had been hospitalised.168 Interventions were usually intensive, multisession clinic-based programmes. They were nurse-led or used experts including pharmacists or allergy specialists.168 These findings mirror the little work published in the UK, which showed that a clinic based in primary care was ineffective,188 while a specialist nurse-led intervention targeted at those attending emergency care reduced further unscheduled care, albeit less in people from ethnic minority groups than in those from white populations.189
Further studies examining the impact of interventions on people from minority ethnic groups in the UK are needed.

C Establish intensive clinic-based programmes for people from ethnic minority groups who have attended emergency care.

14.7 LAY-LED INTERVENTIONS

Educational interventions led by lay, rather than healthcare professionals, have become popular in the last decade. The NHS Expert Patient Programme, a six week group education programme, is an example. Programmes are usually generic; people attending may have a range of conditions, not specifically asthma.

A systematic review including 17 randomised trials of lay-led self-management education programmes was identified. Only two of the included trials specifically addressed people with asthma, and these found no improvements in breathlessness, health-related quality of life, healthcare use, days/night spent in hospital, and no change in disease-specific knowledge. Overall, lay-led self-management interventions may lead to small, short-term improvements in participants’ self efficacy, self-rated health, cognitive symptom management, and frequency of aerobic exercise. There is, however, currently no evidence to suggest that these interventions alter healthcare use or are cost effective.

A Lay-led self-management programmes for people with asthma are not recommended.

14.8 PHARMACIST-LED INTERVENTIONS

Pharmacists have opportunities to provide education for people with asthma, and furthermore, may be able to identify those with poor asthma control. The body of evidence for pharmacy-based interventions is, however, methodologically weak or of limited relevance. A systematic review addressed interventions in low and middle income countries, while another addressed pharmacy interventions more generally.

Interventions generally involved educating community pharmacists to, in turn, educate patients. Other models or elements included follow-up reviews for newly prescribed medication, identifying those with poor control by using questionnaires such as the Asthma Control Test, searching prescribing databases for patients using large numbers of reliever inhalers, and targeting reviews or referral to general practitioners.

Overall, the most consistent improvements in outcomes were seen in inhaler technique, with a few studies showing improvements in reduced dispensing of, or need for, reliever inhalers. There was no convincing evidence of reduction in healthcare use.

Further high-quality randomised trials testing pharmacist-led interventions to improve asthma outcomes are needed.

** ✓** Consider training pharmacists to provide education for people with asthma.
15 Provision of information

The provision of accurate information to patients and carers is of great importance in order to achieve good adherence to treatment and improved patient outcomes. Specific recommendations and good practice points relating to provision of information by healthcare professionals to patients and carers are found throughout this guideline. In addition, supported self management is covered in detail in section 5, including sections on personalised asthma action plans (see section 5.2.2 and Table 8, Annex 10) and adherence and concordance (see section 5.4).

Patient versions of this guideline, in booklet form, covering the management of asthma in adults (for patients and their families and carers) and the management of asthma in children (for parents and carers) are available on the SIGN website (www.sign.ac.uk) or directly from SIGN and could be a useful addition to the patient’s PAAP. Healthcare professionals are encouraged to inform patients and carers that these booklets are available. The patient versions are reviewed and updated in line with the clinical guideline. In addition to information on care and treatment, the booklets include contact details for, and brief information about, a number of organisations that provide information for patients (see section 15.1).

15.1 SOURCES OF FURTHER INFORMATION

15.1.1 NATIONAL ORGANISATIONS FOR PEOPLE WHO HAVE ASTHMA

Asthma UK
18 Mansell Street, London, E11 8AA
Tel: 0300 222 5800
Asthma UK’s Helpline nurses: 0300 222 5800 (9am-5pm, Mon-Fri) – nurses provide advice for people with asthma and for healthcare professionals.
www.asthma.org.uk • General enquiries: info@asthma.org.uk

Asthma UK is a charity dedicated to improving the health and wellbeing of people who are affected by asthma. The charity provides a wide range of information and resources on their website, including downloadable asthma action plans. Printed information booklets and other resources are available on request and bulk copies are available for purchase by healthcare professionals.

British Lung Foundation
73–75 Goswell Road, London, EC1V 7ER
Tel: 020 7688 5555 • Helpline: 08458 50 50 20
www.lunguk.org

The British Lung Foundation aims to help people understand and live with lung disease. They run the Breathe Easy support network which offers information, support and friendship to anyone affected by lung disease.
15.1.2 OTHER ORGANISATIONS

Allergy UK
Planwell House, Lefa Business Park, Edgington Way, Sidcup, Kent, DA14 5BH
Helpline: 01322 619898
www.allergyuk.org

Allergy UK is a charity which aims to increase people's understanding and awareness of allergies, and helps people manage their allergies.

ASH (Action on Smoking and Health)
First Floor, 144–145 Shoreditch High Street, London, E1 6JE
Tel: 020 7739 4732
www.ash.org.uk

ASH is the leading voluntary organisation campaigning for effective tobacco-control legislation and providing an expert information service.

NHS 111
Freephone: 111

This is a 24-hour helpline for people in England and Wales. It is led by nurses who provide confidential healthcare advice and information 24 hours, 365 days a year.

NHS 24
Freephone: 111
www.nhs24.com

This is a 24-hour helpline for people in Scotland. It is led by nurses who provide confidential healthcare advice and information 24 hours, 365 days a year.

Department of Work and Pensions (DWP)
www.dwp.gov.uk

The website gives details of state benefits patients may be entitled to.
16 The evidence base

16.1 SYSTEMATIC LITERATURE REVIEW

The evidence base for this guideline was synthesised in accordance with SIGN methodology. A systematic review of the literature was carried out using an explicit search strategy devised by a SIGN Evidence and Information Scientist. Databases searched include Medline, Embase, Cinahl, PsycINFO and the Cochrane Library. Internet searches were carried out on various websites including the US National Guidelines Clearinghouse. The main searches were supplemented by material identified by individual members of the development group. Each of the selected papers was evaluated by two members of the group using standard SIGN methodological checklists before conclusions were considered as evidence.

The evidence base builds on the reviews carried out for the original (2003) version of the guideline and subsequent updates. Annex 1 provides details of the time period covered for each topic. A copy of the search narrative, including listings of strategies, is available on the SIGN website as part of the supporting material for this guideline.

16.2 RECOMMENDATIONS FOR RESEARCH

The guideline development group was not able to identify sufficient evidence to answer all of the key questions asked in this guideline (see the supporting material for this guideline on the SIGN website) The following areas for further research have been identified:

- Diagnostic accuracy studies and implementation research to:
 - identify and assess the diagnostic accuracy of novel biomarkers
 - test the accuracy of a structured clinical assessment in assessing pretest probability of a diagnosis of asthma
 - confirm, prospectively, the diagnostic accuracy of retrospectively derived algorithms
 - define the optimal approach to making a diagnosis in different clinical practice settings.

- What are the benefits or harms of weight loss interventions in pregnancy in obese women or women with high gestational weight gain?

- Is there additional benefit from nebulised magnesium sulphate in children with acute severe asthma receiving maximal doses of inhaled bronchodilators and steroids?

- Head-to-head comparison of intravenous magnesium sulphate bolus with intravenous β₂ agonist bolus and/or aminophylline. Which intravenous therapy should be used as first-line treatment?

- Is intermittent ICS therapy more, the same, or less effective than daily ICS therapy?

- How effective are long-acting muscarinic agents compared to other treatments available as high-dose therapies?

- At what dose of ICS should additional treatment strategies be considered?

- Is once-daily ICS of equal efficacy to twice daily treatment for comparable ICS molecules?

- Is combined maintenance and reliever therapy more effective, the same as, or less effective than twice daily dosing of ICS at reducing asthma symptoms and attacks in adults and children?

- Does once-daily dosing of ICS in adults and children improve adherence?
• How effective is procalcitonin in assessing infection in acute asthma attacks?
• In patients with severe asthma, is non-invasive ventilation, safe, feasible and effective compared to standard care or to invasive ventilation in different clinical settings? Are measurable clinical outcomes, including respiratory parameters, physiological variables and blood gases improved?
• For patients with asthma not responding to conventional treatment, what additional treatments in the critical care setting are effective and how do outcomes for patients differ between one additional treatment approach and another?
• Is intravenous magnesium sulphate more effective, less effective or equivalent to intravenous salbutamol or intravenous aminophylline in treating acute asthma attacks in children?
• Is administration of intravenous magnesium sulphate safe and effective following administration of nebulised magnesium sulphate?
• In patients with difficult asthma, what objective measures of adherence are available and what impact does monitoring of adherence have on long-term asthma outcomes including exacerbations and hospitalisation?
• What practical tools enable clinicians to assess adherence, explore reasons for non-adherence and elicit attitudes to medication use in patients with asthma?
• Assuming that telehealthcare interventions are equivalent to usual care, what outcomes could assess advantages to patients, organisational impact and cost effectiveness?
• How do patient and professional preferences for modes of delivery influence outcomes?
• In which subgroups or specific circumstances does telehealthcare add value to usual care?
• What is the impact of asynchronous and synchronous remote consulting for people with asthma?
• Do e-health games reduce the frequency of asthma attacks and emergency attendances/admissions and improve outcomes and quality of life in young people with asthma?
• What technical improvements to computerised decision support systems improve their integration into healthcare records and improve use of CDSS amongst healthcare practitioners at the point of care?
17 Development of the guideline

17.1 INTRODUCTION
SIGN is a collaborative network of clinicians, other healthcare professionals and patient organisations and is part of Healthcare Improvement Scotland. SIGN guidelines are developed by multidisciplinary groups of practising clinicians using a standard methodology based on a systematic review of the evidence. Further details about SIGN and the guideline development methodology are contained in ‘SIGN 50: A guideline developer’s handbook’, available at www.sign.ac.uk. This guideline was developed according to the 2011 edition of SIGN 50.

SIGN and BTS have worked in partnership since 2001 to produce the British Guideline on the Management of Asthma. Governance arrangements including a Memorandum of Understanding between SIGN and BTS approved by Healthcare Improvement Scotland, SIGN Council and the BTS Executive Committee, are in place. These arrangements cover production of each update and appointment of members to each of the groups that comprise the overall guideline development group.

17.2 EXECUTIVE AND STEERING GROUPS

*Dr James Paton (Co-Chair) Reader and Honorary Consultant Paediatrician, Royal Hospital for Sick Children, Glasgow
Dr John White (Co-Chair) Consultant Respiratory Physician, York District Hospital
Dr Anne Boyter Senior Lecturer, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow
*Ms Beatrice Cant Programme Manager, SIGN Executive
Dr Chris Cates Senior Research Fellow, St George’s Hospital, University of London
Dr Richard Chavasse Consultant in Respiratory Paediatrics, St George’s Hospital, London
*Mrs Sheila Edwards Chief Executive, British Thoracic Society
Professor David Fishwick Consultant Respiratory Physician, Northern General Hospital, Sheffield
Professor Chris Griffiths Professor of Primary Care, Institute of Health Science Education, London
Ms Jenny Harbour Evidence and Information Scientist, Healthcare Improvement Scotland
*Dr Roberta James Programme Lead, SIGN Executive
Mr Michael McGregor Lay Representative
Ms Sonia Munde Head of Asthma UK helpline and Nurse Manager, Asthma UK, Senior Respiratory Physiologist and Physiotherapist
Dr Rob Niven Senior Lecturer in Respiratory Medicine, Whithenshawe Hospital, Manchester
17.3 Evidence Review Groups

17.3.1 Diagnosis

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor Hilary Pinnock</td>
<td>Professor of Primary Care Respiratory Medicine, Asthma UK Centre for Applied Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, and General Practitioner, Whitstable Medical Practice, Kent</td>
</tr>
<tr>
<td>Professor Aziz Sheikh</td>
<td>Professor of Primary Care Research and Development and Director, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh</td>
</tr>
<tr>
<td>Dr Luke Daines</td>
<td>Academic Clinical Fellow, Asthma UK Centre for Applied Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, and General Practitioner, Craiglockhart Medical Group, Edinburgh.</td>
</tr>
<tr>
<td>Miss Caia Francis</td>
<td>Senior Lecturer, Faculty of Health and Applied Sciences, University of the West of England, Bristol</td>
</tr>
<tr>
<td>Dr John Henderson</td>
<td>Consultant in Paediatric Respiratory Medicine, Bristol Royal Hospital for Children</td>
</tr>
</tbody>
</table>
17.3.2 MONITORING

Dr Steve Turner (Chair)
Senior Lecturer in Paediatrics, University of Aberdeen

Professor Andrew Bush
Professor of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London

Dr Sarah Haney
Consultant in Respiratory Medicine, Northumbria Healthcare NHS Trust, Newcastle upon Tyne

17.3.3 SUPPORTED SELF MANAGEMENT

Professor Hilary Pinnock (Chair)
Professor of Primary Care Respiratory Medicine, Asthma UK Centre for Applied Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, and General Practitioner, Whitstable Medical Practice, Kent

Dr Sarah-Jane Bowen
Paediatric Specialty Registrar, Royal Berkshire Hospital, Reading

Professor Anne-Louise Caress
Professor of Nursing, University of Manchester and University Hospital of South Manchester NHS Foundation Trust

Dr Ian Clifton
Consultant Physician, St James’ University Hospital, Leeds

Mr Euan Reid
Senior Pharmacist, Victoria Hospital, Kirkcaldy

17.3.4 NON-PHARMACOLOGICAL MANAGEMENT

Professor Mike Thomas (Chair)
Professor of Primary Care Research, Southampton University and General Practitioner

Dr Rachel Evans
National Institute for Health Research Clinical Lecturer in Respiratory Medicine, Leicester

Dr Louise Fleming
Senior Lecturer, Paediatric Respiratory Medicine, Imperial College London and Honorary Consultant in Respiratory Paediatrics, Royal Brompton and Harefield NHS Foundation Trust, London

Dr Jennie Gane
Consultant Respiratory Physician, Derby Teaching Hospital
17.3.5 PHARMACOLOGICAL MANAGEMENT

Dr Anne Boyter (Co-Chair)
Senior Lecturer, Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow

Dr Steve Turner (Acting Co-Chair)
Senior Lecturer in Paediatrics, University of Aberdeen

Mrs Susan Ballantyne
Prescribing Support Pharmacist, Templeton Business Centre, Glasgow

Mr Andrew Booth
Advanced Nurse Specialist, York Teaching Hospital

Dr Malcolm Brodlie
Consultant in Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne

Dr Thomas Brown
Consultant Respiratory Physician, Queen Alexandra Hospital, Portsmouth

Mrs Anne Copland
Nurse Practitioner and Practice Nurse Manager, Woodstock Medical Centre, Lanark

Dr Steve Cunningham
Consultant Paediatrician, Royal Hospital for Sick Children, Edinburgh

Ms Grainne d'Ancona
Lead Pharmacist for Medicine, Guys and St Thomas' Hospital, London

Dr James Dodd
Clinical Lecturer, Respiratory Medicine, University of Bristol

Dr Jaymin Morjaria
Consultant in Respiratory and General Internal Medicine, Castlehill Hospital, Cottingham

Ms Linda Pearce
Respiratory Nurse Consultant, West Suffolk Hospital, Bury St Edmonds

Dr Paul Pfeffer
Respiratory Physician, Royal Free Hospital, London

Dr Ian Sinha
Consultant in Paediatric Respiratory Medicine, Alder Hey Children's Hospital, Liverpool

Professor Neil Thomson
Professor of Respiratory Medicine, Gartnavel Hospital, Glasgow

17.3.6 INHALER DEVICES

Dr Chris Cates (Chair)
Senior Research Fellow, St George's Hospital, University of London
17.3.7 MANAGEMENT OF ACUTE ASTHMA

Dr Richard Chavasse (Co-Chair) Consultant in Respiratory Paediatrics, St George's Hospital, London
Dr Stephen Scott (Co-Chair) Consultant in Respiratory Medicine, Countess of Chester Hospital
Ms Susan Frost Lead Respiratory Nurse, Birmingham Children's Hospital
Dr Erol Gaillard Senior Lecturer in Child Health and Honorary Consultant in Paediatric Medicine, University of Leicester
Dr David Jackson Senior Clinical Research Fellow, Imperial College, London
Dr Mark Levy General Practitioner, The Kenton Bridge Medical Centre, Middlesex
Dr Zaheer Mangera Specialist Respiratory Trainee, London Chest Hospital
Dr Catherine McDougall Consultant in Paediatric Intensive Care and Respiratory Medicine, Royal Hospital for Sick Children, Edinburgh
Dr Philip Short Clinical Lecturer in Respiratory Medicine, Ninewells Hospital, Dundee
Dr Tim Sutherland Respiratory Consultant, St James' Hospital, Leeds
Dr Andrew Whittamore General Practitioner, Lovedean, Hampshire

17.3.8 DIFFICULT ASTHMA

Dr Rob Niven (Chair) Senior Lecturer in Respiratory Medicine, Wythenshawe Hospital, Manchester
Dr Chris Brightling Senior Clinical Research Fellow, Glenfield Hospital, Leicester
Dr Matthew Masoli Consultant, Medical Specialties, Plymouth
Dr Daniel Menzies Consultant Respiratory Physician, Glan Clwyd, Rhyl

17.3.9 ASTHMA IN ADOLESCENTS

Professor Graham Roberts (Chair) Professor and Honorary Consultant Paediatrician, University of Southampton
Miss Ann McMurray Asthma Nurse Specialist, Royal Hospital for Sick Children, Edinburgh
Dr Mitesh Patel Clinical Lecturer in Respiratory Medicine, University of Nottingham

17.3.10 ASTHMA IN PREGNANCY

Dr Sarah Winfield Consultant Obstetrician, Leeds General Hospital
17.3.11 OCCUPATIONAL ASTHMA

Professor David Fishwick (Chair) Consultant Respiratory Physician and
Honorary Professor of Occupational and
Environmental Respiratory Disease, Sheffield
Teaching Hospitals NHS Foundation Trust
and the University of Sheffield

Professor Paul Cullinan Professor of Occupational and Environmental
Respiratory Disease, Royal Brompton
Hospital and Imperial College, London

Professor Anthony Frew Consultant in Allergy, Respiratory Medicine
and General Internal Medicine, Brighton and
Sussex University Hospitals NHS Trust

17.3.12 ORGANISATION AND DELIVERY OF CARE

Professor Chris Griffiths (Chair) Professor of Primary Care, Institute of Health
Science Education, London

Dr Suresh Babu Consultant Respiratory Physician, Queen
Alexandra Hospital, Portsmouth

Mr David Long Lead Respiratory Nurse Specialist, Musgrove
Park Hospital, Taunton

Dr Raj Rajakulasingam Consultant Respiratory Physician and
Honorary Reader, Homerton University
Hospital, London

Dr Richard Russell Consultant Physician, Heatherwood and
Wexham Park Hospitals, Berkshire

The membership of the guideline development group was confirmed following
consultation with the member organisations of SIGN. All members of the guideline
development group made declarations of interest. A register of interests is available in
the supporting material section for this guideline at www.sign.ac.uk

Guideline development and literature review expertise, support and facilitation were
provided by the SIGN Executive.

All members of the SIGN Executive make yearly declarations of interest. A register of
interests is available on the contacts page of the SIGN website www.sign.ac.uk

Karen Graham Patient Involvement Officer

Karen King Distribution and Officer Co-ordinator

Stuart Neville Publications Designer

Gaynor Rattray Guideline Co-ordinator
17.4 ACKNOWLEDGEMENTS

SIGN would like to acknowledge the guideline development group responsible for the development of SIGN 101: British guideline on the management of asthma, on which this guideline is based, and all guideline development group members who were involved in updating SIGN 101 from 2009 to 2011, and in producing SIGN 141 in 2014. SIGN would also like to acknowledge the contribution of the following individuals who were involved in the early stages of development of this updated version.

Professor Mike Shields
Professor of Child Health, Queen’s University, Belfast

Dr Robin Carr
General Practitioner, Nuffield Health Centre, Witney, Oxford

SIGN would like to acknowledge the PRISMS group who kindly provided the searches, quality assessment and data extraction for the implementation studies in asthma self management (see section 5.5) based on their systematic review of self-management support interventions for people with long-term conditions conducted as part of a project funded by the National Institute for Health Research Health Services and Delivery Research programme (project number 11/1014/04). (Taylor SJC, Pinnock H, Epiphaniou E, et al. A rapid synthesis of the evidence on interventions supporting self-management for people with long-term conditions. PRISMS, Practical Systematic Review of Self-Management Support for long-term conditions. Health Serv Deliv Res 2014;2:54). The considered judgement and recommendations (see section 5.5) were developed by the self-management Evidence Review Group in accordance with SIGN methodology. The views and opinions expressed therein are those of the SIGN/BTS guideline development group and do not necessarily reflect those of the PRISMS authors, NIHR, NHS or the Department of Health.

17.5 CONSULTATION AND PEER REVIEW

17.5.1 CONSULTATION

Selected changes to this guideline were presented for discussion in draft form at the Winter Meeting of the British Thoracic Society in December 2015. The draft guideline was also available on the SIGN and BTS websites for five weeks to allow all interested parties to comment. A report of the consultation and peer review comments and responses is available in the supporting material section for this guideline on the SIGN website. All expert referees and other contributors made declarations of interest and further details of these are available on request from the SIGN Executive.
17.5.2 SPECIALIST REVIEW

This guideline was also reviewed in draft form by the following independent expert referees, who were asked to comment primarily on the comprehensiveness and accuracy of interpretation of the evidence base supporting the recommendations in the guideline. The guideline group addresses every comment made by an external reviewer, and must justify any disagreement with the reviewers’ comments. All expert referees made declarations of interest and further details of these are available on request from the SIGN Executive.

SIGN and the BTS are very grateful to all of these experts for their contribution to the guideline.

Mrs Lisa Chandler
Public Health Principal, Wakefield Local Authority

Dr Graham Douglas
Retired Consultant Physician, Aberdeen

Mrs Noreen Downes
Principal Pharmacist, Scottish Medicines Consortium, Glasgow

Dr Bernard Higgins
Consultant Respiratory Physician, Freeman Hospital, Newcastle upon Tyne

Dr Colville Laird
Medical Director, BASICS Scotland, Aberuthven

Mrs Jane Scullion
Respiratory Nurse Consultant, University Hospital of Leicester

The following organisations also commented

Asthma UK, London
National Paediatric Respiratory and Allergy Nurses Group, Birmingham
Primary Care Respiratory Society UK
Royal College of General Practitioners, London
Royal College of Physicians, London
Royal College of Physicians Edinburgh
17.5.3 EDITORIAL GROUP

As a final quality control check, the guideline is reviewed by an editorial group comprising the relevant specialty representatives on SIGN Council and members of the Governance Committee for the SIGN British guideline on the management of asthma to ensure that the specialist reviewers’ comments have been addressed adequately and that any risk of bias in the guideline development process as a whole has been minimised. The editorial group for this guideline was as follows. All members of SIGN Council make yearly declarations of interest. A register of interests is available on the SIGN Council Membership page of the SIGN website www.sign.ac.uk.

Dr Martin Allen
Honorary Secretary, British Thoracic Society

Mr Gary Cook
Royal Pharmaceutical Society

Mrs Sheila Edwards
Chief Executive, British Thoracic Society

Dr Colin Gelder
Chair, BTS Standards of Care Committee

Dr Roberta James
Programme Lead, SIGN; Co-Editor

Professor John Kinsella
Chair of SIGN; Co-Editor

Dr Karen Ritchie
Head of Knowledge and Information, Healthcare Improvement Scotland

Ms Sally Welham
Deputy Chief Executive, British Thoracic Society
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQ</td>
<td>Asthma Control Questionnaire</td>
</tr>
<tr>
<td>AOR</td>
<td>adjusted odds ratio</td>
</tr>
<tr>
<td>Apgar score</td>
<td>A number expressing the physical condition of a newborn infant (a score of ten representing the best possible condition)</td>
</tr>
<tr>
<td>BCG</td>
<td>Bacillus Calmette-Guérin</td>
</tr>
<tr>
<td>BDP</td>
<td>beclometasone dipropionate</td>
</tr>
<tr>
<td>BHR</td>
<td>bronchial hyper-reactivity</td>
</tr>
<tr>
<td>BNF</td>
<td>British National Formulary</td>
</tr>
<tr>
<td>BTS</td>
<td>British Thoracic Society</td>
</tr>
<tr>
<td>CAM</td>
<td>complementary and alternative medicine</td>
</tr>
<tr>
<td>CDSS</td>
<td>computerised decision support systems</td>
</tr>
<tr>
<td>CFC</td>
<td>chlorofluorocarbon</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>DPI</td>
<td>dry powder inhaler</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>ED</td>
<td>emergency department</td>
</tr>
<tr>
<td>eMC</td>
<td>electronic Medicines Compendium</td>
</tr>
<tr>
<td>ETS</td>
<td>environmental tobacco smoke</td>
</tr>
<tr>
<td>FeNO</td>
<td>exhaled nitric oxide concentration</td>
</tr>
<tr>
<td>FEV₁</td>
<td>forced expiratory volume in one second</td>
</tr>
<tr>
<td>FVC</td>
<td>forced vital capacity</td>
</tr>
<tr>
<td>GMC</td>
<td>General Medical Council</td>
</tr>
<tr>
<td>GORD</td>
<td>gastro-oesophageal reflux disease</td>
</tr>
<tr>
<td>GP</td>
<td>general practitioner</td>
</tr>
<tr>
<td>HDM</td>
<td>house dust mite</td>
</tr>
<tr>
<td>ICS</td>
<td>inhaled corticosteroids</td>
</tr>
<tr>
<td>ICU</td>
<td>intensive care unit</td>
</tr>
<tr>
<td>IgE</td>
<td>immunoglobulin E</td>
</tr>
<tr>
<td>IM</td>
<td>intramuscular</td>
</tr>
<tr>
<td>IT</td>
<td>information technology</td>
</tr>
<tr>
<td>IU</td>
<td>international unit</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascals</td>
</tr>
<tr>
<td>LABA</td>
<td>long-acting β₂ agonist</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>LAMA</td>
<td>long-acting muscarinic antagonist</td>
</tr>
<tr>
<td>LTRA</td>
<td>leukotriene receptor antagonists</td>
</tr>
<tr>
<td>MA</td>
<td>marketing authorisation</td>
</tr>
<tr>
<td>MDI</td>
<td>metered dose inhaler</td>
</tr>
<tr>
<td>MHRA</td>
<td>Medicines and Healthcare products Regulatory Agency</td>
</tr>
<tr>
<td>mmHg</td>
<td>millimetres of mercury</td>
</tr>
<tr>
<td>n-3PUFAs</td>
<td>omega-3 polyunsaturated fatty acids</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Care Excellence</td>
</tr>
<tr>
<td>NIV</td>
<td>non-invasive ventilation</td>
</tr>
<tr>
<td>NPV</td>
<td>negative predictive value</td>
</tr>
<tr>
<td>NRAD</td>
<td>National Review of Asthma Deaths</td>
</tr>
<tr>
<td>OCS</td>
<td>oral corticosteroids</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PAAP</td>
<td>personalised asthma action plan</td>
</tr>
<tr>
<td>PACE</td>
<td>Physician Asthma Care Education</td>
</tr>
<tr>
<td>PaCO₂</td>
<td>partial arterial pressure of carbon dioxide</td>
</tr>
<tr>
<td>PaO₂</td>
<td>partial arterial pressure of oxygen</td>
</tr>
<tr>
<td>PC₂₀</td>
<td>the provocative concentration of bronchoconstrictor (e.g., methacholine) required to cause a 20% fall in FEV₁</td>
</tr>
<tr>
<td>PD₂₀</td>
<td>the provocative dose of bronchoconstrictor (e.g., methacholine) required to cause a 20% fall in FEV₁</td>
</tr>
<tr>
<td>PEF</td>
<td>peak expiratory flow</td>
</tr>
<tr>
<td>pMDI</td>
<td>pressurised metered dose inhaler</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>PPV</td>
<td>positive predictive value</td>
</tr>
<tr>
<td>QoL</td>
<td>quality of life</td>
</tr>
<tr>
<td>RCT</td>
<td>randomised controlled trial</td>
</tr>
<tr>
<td>rhDNAse</td>
<td>recombinant human deoxyribonuclease</td>
</tr>
<tr>
<td>RR</td>
<td>risk ratio</td>
</tr>
<tr>
<td>SABA</td>
<td>short-acting β₂ agonist</td>
</tr>
<tr>
<td>SCIT</td>
<td>subcutaneous immunotherapy</td>
</tr>
<tr>
<td>SIC</td>
<td>specific inhalation challenge</td>
</tr>
<tr>
<td>SIGN</td>
<td>Scottish Intercollegiate Guidelines Network</td>
</tr>
<tr>
<td>SLIT</td>
<td>sublingual immunotherapy</td>
</tr>
<tr>
<td>SMC</td>
<td>Scottish Medicines Consortium</td>
</tr>
<tr>
<td>SpO₂</td>
<td>oxygen saturation measured by a pulse oximeter</td>
</tr>
<tr>
<td>TNF</td>
<td>tumour necrosis factor</td>
</tr>
<tr>
<td>Vₑmax</td>
<td>ventilation at maximal exercise capacity</td>
</tr>
</tbody>
</table>
Annex 1
Summary of search histories by section

This guideline is based on a series of structured key questions that define the target population, the intervention, diagnostic test, or exposure under investigation, the comparison(s) used and the outcomes used to measure efficacy, effectiveness, or risk. These questions form the basis of the systematic literature search.

Literature searches to support the various sections of this guideline are conducted on a rolling basis. This summary indicates the currency of the searches supporting each section. Searches in all databases began with the earliest year available at that time, which varied from database to database; for example, searches in Embase extended back to 1980 and in CINAHL to 1982. Specific date coverage is provided for Medline.

The 2016 revision saw updating of multiple sections of the guideline identified as priority areas by the guideline development group. Literature searches were conducted in Medline, Embase, CINAHL and the Cochrane Library for all topics to identify systematic reviews and RCTs published between January 2011 and January 2015. Additional literature search coverage for the specific topics considered in this update is described below.

Detailed search strategies are available on the SIGN website in the supplementary material section.

Section 3 Diagnosis and monitoring
Diagnosis in children
The search was updated in January 2015 with coverage extending from 2011–2015. This was a broad search for studies relating to diagnosis and monitoring of asthma. No study design filter was applied.

Section 4 Supported self management
The search was updated in June 2015 to cover adherence to asthma treatment (2011–2015). The Cochrane Library, Medline, Embase and CINAHL were searched. No study type filters were applied.

Section 5 Non-pharmacological management
An update search was conducted in October 2015 to identify additional studies on bariatric surgery related weight loss. The search covered 2011–2015 in Medline, the Cochrane Library and CINAHL. No study design filters were applied.

Section 6 Pharmacological management
The 2016 revision updated searches for inhaled steroids, long-acting β₂ agonists, theophyllines, leukotriene receptor antagonists, tiotropium, anticholinergics, frequency and dose of inhaled steroids, step-up and step-down therapies, IgE monoclonal antibodies, intermittent steroid therapy and macrolides.

The Cochrane Library, Medline and Embase were searched from 2011–2015. SIGN systematic review and RCT filters were applied.
Section 7 Inhaler devices
Although the literature search was updated for 2011–2015, this section was not selected by the group for this update.

Section 8 Management of acute asthma
The 2016 revision updated the searches for nebulised magnesium, nebulised β₂ agonists, management of care in different hospital settings, dealing with poor response to standard therapies, side effects of IV bronchodilators and positive pressure ventilation. The Cochrane Library, Medline and Embase were searched from 2011–2015. No study type filter was applied.

Section 9 Difficult asthma
The 2016 revision updated the searches on management models and non-adherence. Medline and CINAHL were searched from 2011–2015. No study filter was applied.

Section 10 Asthma in adolescents
Although the literature search was updated for 2011–2015, this section was not selected by the group for this update.

Section 11 Asthma in pregnancy
Although the literature search was updated for 2011–2015, this section was not selected by the group for this update.

Section 12 Occupational asthma
In 2005, a systematic review by the British Occupational Health Research Foundation (BOHRF) was used as the basis for updating this section.

In the 2016 update literature searches were conducted for occupational asthma diagnosis and relocation away from occupational exposures. Medline and Health Management Information Consortium were searched from 2011–2015. No study type filter was applied.

Section 13 Organisation and delivery of care
A literature search was conducted to identify systematic reviews on telemedicine. The Cochrane Library, Medline and CINAHL were searched from 2005–2015. The SIGN systematic review filter was applied.
Management of acute severe asthma in adults in general practice

INITIAL ASSESSMENT

<table>
<thead>
<tr>
<th>Moderate asthma</th>
<th>Acute severe asthma</th>
<th>Life-threatening asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEF >50–75% best or predicted</td>
<td>PEF 33–50% best or predicted</td>
<td>PEF <33% best or predicted</td>
</tr>
</tbody>
</table>

FURTHER ASSESSMENT

- SpO₂ ≥92%
- Speech normal
- Respiration <25 breaths/min
- Pulse <110 beats/min

- SpO₂ ≥92%
- Can’t complete sentences
- Respiration ≥25 breaths/min
- Pulse ≥110 beats/min

- SpO₂ <92%
- Silent chest, cyanosis or poor respiratory effort
- Arrhythmia or hypotension
- Exhaustion, altered consciousness

MANAGEMENT

<table>
<thead>
<tr>
<th>Moderate asthma</th>
<th>Acute severe asthma</th>
<th>Life-threatening asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat at home or in surgery and Assess response to treatment</td>
<td>Consider admission</td>
<td>Arrange immediate ADMISSION</td>
</tr>
</tbody>
</table>

TREATMENT

- **Moderate asthma**
 - β₂ bronchodilator:
 - via spacer (give 4 puffs initially and give a further 2 puffs every 2 minutes according to response up to maximum of 10 puffs)

- **Acute severe asthma**
 - Oxygen to maintain SpO₂ 94–98% if available
 - β₂ bronchodilator:
 - nebuliser (preferably oxygen driven) (salbutamol 5 mg)
 - or via spacer (give 4 puffs initially and give a further 2 puffs every 2 minutes according to response up to maximum of 10 puffs)
 - Prednisolone 40–50 mg or IV hydrocortisone 100 mg
 - If no response in acute severe asthma: ADMIT

- **Life-threatening asthma**
 - Oxygen to maintain SpO₂ 94–98%
 - β₂ bronchodilator and ipratropium:
 - nebuliser (preferably oxygen driven) (salbutamol 5 mg and ipratropium 0.5mg)
 - or via spacer (give 4 puffs initially and give a further 2 puffs every 2 minutes according to response up to maximum of 10 puffs)
 - Prednisolone 40–50 mg or IV hydrocortisone 100 mg immediately

Admit to hospital if any:
- Life-threatening features
- Features of acute severe asthma present after initial treatment
- Previous near-fatal asthma

If admitting the patient to hospital:
- Stay with patient until ambulance arrives
- Send written assessment and referral details to hospital
- β₂ bronchodilator via oxygen-driven nebuliser in ambulance

Follow up after treatment or discharge from hospital:
- GP review within 2 working days
- Monitor symptoms and PEF
- Check inhaler technique
- Written asthma action plan
- Modify treatment according to guidelines for chronic persistent asthma
- Address potentially preventable contributors to admission

Many deaths from asthma are preventable. Delay can be fatal. Factors leading to poor outcome include:

- Clinical staff failing to assess severity by objective measurement
- Patients or relatives failing to appreciate severity
- Under use of corticosteroids

Regard each emergency asthma consultation as for acute severe asthma until shown otherwise.

Many deaths from asthma are preventable. Delay can be fatal. Factors leading to poor outcome include:

- Clinical staff failing to assess severity by objective measurement
- Patients or relatives failing to appreciate severity
- Under use of corticosteroids

Regard each emergency asthma consultation as for acute severe asthma until shown otherwise.

Caution: Patients with severe or life-threatening attacks may not be distressed and may not have all the abnormalities listed below. The presence of any should alert the doctor.
Annex 3

Management of acute severe asthma in adults in the emergency department

Measure peak expiratory flow and arterial saturations

<table>
<thead>
<tr>
<th>Time</th>
<th>PEF >50–75% best or predicted Mild asthma</th>
<th>PEF 33–50% best or predicted Moderate asthma</th>
<th>PEF <33% best or predicted Moderate asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mins</td>
<td>Clinic stable AND PEF >75%</td>
<td>No life threatening features AND PEF 50–75%</td>
<td>Life threatening features OR PEF <50%</td>
</tr>
<tr>
<td>15–20 mins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 mins</td>
<td>Repeat salbutamol 5 mg nebuliser</td>
<td>Signs of severe asthma OR PEF <50%</td>
<td></td>
</tr>
<tr>
<td>120 mins</td>
<td>Patient recovering AND PEF >75%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBSERVE AND MONITOR

- SpO₂
- Heart rate
- Respiratory rate

ADMIT

- Patient accompanied by a nurse or doctor at all times

POTENTIAL DISCHARGE

- In all patients who received nebulised β₂ agonists prior to presentation, consider an extended observation period prior to discharge
- If PEF<50% on presentation, give prednisolone 40–50 mg/day for 5 days
- In all patients ensure treatment supply of inhaled steroid and β₂ agonist and check inhaler technique
- Arrange GP follow up within 2 working days post discharge
- Fax or email discharge letter to GP
- Refer to asthma liaison nurse/ chest clinic

Measure arterial blood gases

Markers of severity:
- Normal or raised PaCO₂ (PaCO₂>4.6 kPa; 35 mmHg)
- Severe hypoxia (PaO₂ <8 kPa; 60 mmHg)
- Low pH (or high H⁺)

Obtain senior/ICU help now if any life-threatening features are present

1. Oxygen to maintain SpO₂ 94–98%
2. Salbutamol 5 mg plus ipratropium 0.5 mg via oxygen-driven nebuliser
3. Prednisolone 40–50 mg orally or IV hydrocortisone 100 mg
4. Measure arterial blood gases
5. Markers of severity:
 - 'Normal' or raised PaCO₂ (PaCO₂>4.6 kPa; 35 mmHg)
 - Severe hypoxia (PaO₂ <8 kPa; 60 mmHg)
 - Low pH (or high H⁺)

Give/repeat salbutamol 5 mg by oxygen-driven nebuliser after 15 minutes

- Consider continuous salbutamol nebuliser 5–10 mg/hr
- Consider N₄ magnesium sulphate 1.2–2 g over 20 minutes
- Correct fluid/electrolytes, especially K⁺ disturbances
- Chest X-ray
- Repeat ABG

Adapted by Clement Clarke for use with EN13826 / EU scale peak flow meters from Nunn AJ Gregg I, Br Med J 1989:298;1068-70
Management of acute severe asthma in adults in hospital

IMMEDIATE TREATMENT
- Oxygen to maintain SpO₂ 94–98%
- Salbutamol 5 mg via an oxygen-driven nebuliser
- Ipratropium bromide 0.5 mg via an oxygen-driven nebuliser
- Prednisolone tablets 40–50 mg or IV hydrocortisone 100 mg
- No sedatives of any kind
- Chest X-ray if pneumothorax or consolidation are suspected or patient requires mechanical ventilation

IF LIFE-THREATENING FEATURES ARE PRESENT:
- Discuss with senior clinician and ICU team
- Consider IV magnesium sulphate 1.2–2 g infusion over 20 minutes (unless already given)
- Give nebulised β₂ agonist more frequently eg salbutamol 5 mg up to every 15-30 minutes or 10 mg per hour via continuous nebulisation (requires special nebuliser)

Features of acute severe asthma
- Peak expiratory flow (PEF) 33–50% of best (use % predicted if recent best unknown)
- Can’t complete sentences in one breath
- Respiration ≥25 breaths/min
- Pulse ≥110 beats/min

Life-threatening features
- PEF <33% of best or predicted
- SpO₂ <92%
- Silent chest, cyanosis, or feeble respiratory effort
- Arrhythmia or hypotension
- Exhaustion, altered consciousness

Near-fatal asthma
- Raised PaCO₂
- Requiring mechanical ventilation with raised inflation pressures

Blood gas markers of a life-threatening attack:
- ‘Normal’ (4.6–6 kPa, 35–45 mmHg) PaCO₂
- Severe hypoxia: PaO₂ <8 kPa (60 mmHg) irrespective of treatment with oxygen
- A low pH (or high H⁺)

Caution: Patients with severe or life-threatening attacks may not be distressed and may not have all these abnormalities. The presence of any should alert the doctor.

SUBSEQUENT MANAGEMENT

IF PATIENT IS IMPROVING continue:
- Oxygen to maintain SpO₂ 94–98%
- Prednisolone 40–50mg daily or IV hydrocortisone 100 mg 6 hourly
- Nebulised β₂ agonist and ipratropium 4–6 hourly

IF PATIENT NOT IMPROVING AFTER 15–30 MINUTES:
- Continue oxygen and steroids
- Use continuous nebulisation of salbutamol at 5–10 mg/hour if an appropriate nebuliser is available. Otherwise give nebulised salbutamol 5 mg every 15–30 minutes
- Continue ipratropium 0.5 mg 4–6 hourly until patient is improving

IF PATIENT IS STILL NOT IMPROVING:
- Discuss patient with senior clinician and ICU team
- Consider IV magnesium sulphate 1.2–2 g over 20 minutes (unless already given)
- Senior clinician may consider use of IV β₂ agonist or IV aminophylline or progression to mechanical ventilation

MONITORING
- Repeat measurement of PEF 15–30 minutes after starting treatment
- Oximetry: maintain SpO₂ >94–98%
- Repeat blood gas measurements within 1 hour of starting treatment if:
 - initial PaO₂ <8 kPa (60 mmHg) unless subsequent SpO₂ >92% or
 - PaCO₂ normal or raised or
 - patient deteriorates
- Chart PEF before and after giving β₂ agonists and at least 4 times daily throughout hospital stay

Transfer to ICU accompanied by a doctor prepared to intubate if:
- Deteriorating PEF, worsening or persisting hypoxia, or hypercapnia
- Exhaustion, altered consciousness
- Poor respiratory effort or respiratory arrest

DISCHARGE

When discharged from hospital, patients should have:
- Been on discharge medication for 12–24 hours and have had inhaler technique checked and recorded
- PEF >75% of best or predicted and PEF diurnal variability <25% unless discharge is agreed with respiratory physician
- Treatment with oral and inhaled steroids in addition to bronchodilators
- Own PEF meter and written asthma action plan
- GP follow up arranged within 2 working days
- Follow-up appointment in respiratory clinic within 4 weeks

Patients with severe asthma (indicated by need for admission) and adverse behavioural or psychosocial features are at risk of further severe or fatal attacks.
- Determine reason(s) for exacerbation and admission
- Send details of admission, discharge and potential best PEF to GP

Peak Expiratory Flow Rate - Normal Values

Adapted by Clement Clarke for use with EN13826 / EU scale peak flow meters from Nunn AJ Gregg I, Br Med J 1989;298;1068-70

Features of acute severe asthma
- Peak expiratory flow (PEF) 33–50% of best (use % predicted if recent best unknown)
- Can’t complete sentences in one breath
- Respiration ≥25 breaths/min
- Pulse ≥110 beats/min

Life-threatening features
- PEF <33% of best or predicted
- SpO₂ <92%
- Silent chest, cyanosis, or feeble respiratory effort
- Arrhythmia or hypotension
- Exhaustion, altered consciousness

Near-fatal asthma
- Raised PaCO₂
- Requiring mechanical ventilation with raised inflation pressures

IMMEDIATE TREATMENT
- Oxygen to maintain SpO₂ 94–98%
- Salbutamol 5 mg via an oxygen-driven nebuliser
- Ipratropium bromide 0.5 mg via an oxygen-driven nebuliser
- Prednisolone tablets 40–50 mg or IV hydrocortisone 100 mg
- No sedatives of any kind
- Chest X-ray if pneumothorax or consolidation are suspected or patient requires mechanical ventilation

IF LIFE-THREATENING FEATURES ARE PRESENT:
- Discuss with senior clinician and ICU team
- Consider IV magnesium sulphate 1.2–2 g infusion over 20 minutes (unless already given)
- Give nebulised β₂ agonist more frequently eg salbutamol 5 mg up to every 15-30 minutes or 10 mg per hour via continuous nebulisation (requires special nebuliser)

SUBSEQUENT MANAGEMENT

IF PATIENT IS IMPROVING continue:
- Oxygen to maintain SpO₂ 94–98%
- Prednisolone 40–50mg daily or IV hydrocortisone 100 mg 6 hourly
- Nebulised β₂ agonist and ipratropium 4–6 hourly

IF PATIENT NOT IMPROVING AFTER 15–30 MINUTES:
- Continue oxygen and steroids
- Use continuous nebulisation of salbutamol at 5–10 mg/hour if an appropriate nebuliser is available. Otherwise give nebulised salbutamol 5 mg every 15–30 minutes
- Continue ipratropium 0.5 mg 4–6 hourly until patient is improving

IF PATIENT IS STILL NOT IMPROVING:
- Discuss patient with senior clinician and ICU team
- Consider IV magnesium sulphate 1.2–2 g over 20 minutes (unless already given)
- Senior clinician may consider use of IV β₂ agonist or IV aminophylline or progression to mechanical ventilation

MONITORING
- Repeat measurement of PEF 15–30 minutes after starting treatment
- Oximetry: maintain SpO₂ >94–98%
- Repeat blood gas measurements within 1 hour of starting treatment if:
 - initial PaO₂ <8 kPa (60 mmHg) unless subsequent SpO₂ >92% or
 - PaCO₂ normal or raised or
 - patient deteriorates
- Chart PEF before and after giving β₂ agonists and at least 4 times daily throughout hospital stay

Transfer to ICU accompanied by a doctor prepared to intubate if:
- Deteriorating PEF, worsening or persisting hypoxia, or hypercapnia
- Exhaustion, altered consciousness
- Poor respiratory effort or respiratory arrest

DISCHARGE

When discharged from hospital, patients should have:
- Been on discharge medication for 12–24 hours and have had inhaler technique checked and recorded
- PEF >75% of best or predicted and PEF diurnal variability <25% unless discharge is agreed with respiratory physician
- Treatment with oral and inhaled steroids in addition to bronchodilators
- Own PEF meter and written asthma action plan
- GP follow up arranged within 2 working days
- Follow-up appointment in respiratory clinic within 4 weeks

Patients with severe asthma (indicated by need for admission) and adverse behavioural or psychosocial features are at risk of further severe or fatal attacks.
- Determine reason(s) for exacerbation and admission
- Send details of admission, discharge and potential best PEF to GP
Management of acute asthma in children in general practice

Age 2–5 years

ASSESS AND RECORD ASTHMA SEVERITY

<table>
<thead>
<tr>
<th>Moderate asthma</th>
<th>Acute severe asthma</th>
<th>Life-threatening asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>• SpO₂ ≥92%</td>
<td>• SpO₂ <92%</td>
<td>SpO₂ <92% plus any of:</td>
</tr>
<tr>
<td>• Able to talk</td>
<td>• Too breathless to talk</td>
<td>- Silent chest</td>
</tr>
<tr>
<td>• Heart rate ≤140/min</td>
<td>• Heart rate >140/min</td>
<td>- Poor respiratory effort</td>
</tr>
<tr>
<td>• Respiratory rate ≤40/min</td>
<td>• Respiratory rate >40/min</td>
<td>- Agitation</td>
</tr>
<tr>
<td>• Use of accessory neck muscles</td>
<td>• Use of accessory neck muscles</td>
<td>- Confusion</td>
</tr>
</tbody>
</table>

Annex 5

Management of acute asthma in children in general practice

Age 2–5 years

<table>
<thead>
<tr>
<th>Moderate asthma</th>
<th>Acute severe asthma</th>
<th>Life-threatening asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>• SpO₂ ≥92%</td>
<td>• SpO₂ <92%</td>
<td>SpO₂ <92% plus any of:</td>
</tr>
<tr>
<td>• Able to talk</td>
<td>• Too breathless to talk</td>
<td>- Silent chest</td>
</tr>
<tr>
<td>• Heart rate ≤140/min</td>
<td>• Heart rate >140/min</td>
<td>- Poor respiratory effort</td>
</tr>
<tr>
<td>• Respiratory rate ≤40/min</td>
<td>• Respiratory rate >40/min</td>
<td>- Agitation</td>
</tr>
<tr>
<td>• Use of accessory neck muscles</td>
<td>• Use of accessory neck muscles</td>
<td>- Confusion</td>
</tr>
</tbody>
</table>

Lower threshold for admission if:

- Attack in late afternoon or at night
- Recent hospital admission or previous severe attack
- Concern over social circumstances or ability to cope at home

NB: If a patient shows signs and symptoms across categories, always treat according to their most severe features

Lower threshold for admission if:

- Attack in late afternoon or at night
- Recent hospital admission or previous severe attack
- Concern over social circumstances or ability to cope at home

NB: If a patient shows signs and symptoms across categories, always treat according to their most severe features
Management of Acute Asthma in Children in Emergency Department

Age 2–5 years

ASSESS AND RECORD ASTHMA SEVERITY

<table>
<thead>
<tr>
<th>Moderate asthma</th>
<th>Acute severe asthma</th>
<th>Life-threatening asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO₂ ≥92%</td>
<td>SpO₂ <92%</td>
<td>SpO₂ <92% plus any of:</td>
</tr>
<tr>
<td>No clinical features of severe asthma</td>
<td>Too breathless to talk or eat</td>
<td>Silent chest</td>
</tr>
<tr>
<td>NB: If a patient has signs and symptoms across categories, always treat according to their most severe features</td>
<td>Heart rate >140/min</td>
<td>Poor respiratory effort</td>
</tr>
<tr>
<td></td>
<td>Respiratory rate >40/min</td>
<td>Agitation</td>
</tr>
<tr>
<td></td>
<td>Use of accessory neck muscles</td>
<td>Confusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cyanosis</td>
</tr>
</tbody>
</table>

First line treatments

- **β₂ agonist 2–10 puffs via spacer ± facemask (given one puff at a time inhaled separately using tidal breathing)**
- **Give one puff of β₂ agonist every 3–60 seconds up to 10 puffs according to response**
- **Consider oral prednisolone 20 mg**

Reassess within 1 hour

Second line treatments

- **β₂ agonist 10 puffs via spacer ± facemask or nebulised salbutamol 2.5 mg**
- **Oral prednisolone 20 mg or IV hydrocortisone 4 mg/kg if vomiting**
- **If poor response add 0.25 mg nebulised ipratropium bromide to every nebulised β₂ agonist**
- **Repeat β₂ agonist and ipratropium up to every 20 minutes for 2 hours according to response**

Discuss with senior clinician, PICU team or paediatrician

Reassess within 1 hour

DISCHARGE PLAN

- **Continue β₂ agonist 4 hourly as necessary**
- **Consider prednisolone 20 mg daily for 3–5 days until symptoms have settled**
- **Advise to contact GP if not controlled on above treatment**
- **Provide a written asthma action plan**
- **Review regular treatment**
- **Check inhaler technique**
- **Arrange GP follow up within 48 hours**
- **Arrange hospital asthma clinic follow up in 4–6 weeks if 2nd or subsequent attack in past 12 months.**

Age >5 years

ASSESS AND RECORD ASTHMA SEVERITY

<table>
<thead>
<tr>
<th>Moderate asthma</th>
<th>Acute severe asthma</th>
<th>Life-threatening asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpO₂ <92%</td>
<td>PEF ≥50% best or predicted</td>
<td>PEF <92% plus any of:</td>
</tr>
<tr>
<td>No clinical features of severe asthma</td>
<td>No clinical features of severe asthma</td>
<td>Silent chest</td>
</tr>
<tr>
<td>NB: If a patient has signs and symptoms across categories, always treat according to their most severe features</td>
<td>Heart rate >125/min</td>
<td>Poor respiratory effort</td>
</tr>
<tr>
<td></td>
<td>Respiratory rate >30/min</td>
<td>Altered consciousness</td>
</tr>
<tr>
<td></td>
<td>Use of accessory neck</td>
<td>Cyanosis</td>
</tr>
</tbody>
</table>

First line treatments

- **β₂ agonist 10 puffs via spacer and mouthpiece (given one puff at a time inhaled separately using tidal breathing)**
- **Give one puff of β₂ agonist every 20–30 minutes**
- **Oral prednisolone 20 mg or IV hydrocortisone 4 mg/kg if vomiting**
- **If poor response add 0.25 mg nebulised ipratropium bromide to every nebulised β₂ agonist**
- **Repeat β₂ agonist and ipratropium up to every 20 minutes for 2 hours according to response**

Discuss with senior clinician, PICU team or paediatrician

Reassess within 1 hour

DISCHARGE PLAN

- **Consider 2nd line treatments – see Annex 7**
- **Admit all cases if features of severe attack persist after initial treatment**
- **Arrange transfer to PICU/HDU if poor response to treatment as per local guidelines**
Management of acute asthma in children in hospital

Age 2–5 years

<table>
<thead>
<tr>
<th>Moderate asthma</th>
<th>Moderate asthma</th>
<th>Life-threatening asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESS AND RECORD ASTHMA SEVERITY</td>
<td>ASSESS AND RECORD ASTHMA SEVERITY</td>
<td>ASSESS AND RECORD ASTHMA SEVERITY</td>
</tr>
<tr>
<td>SpO<sub>2</sub> ≥92%</td>
<td>SpO<sub>2</sub> <92%</td>
<td>SpO<sub>2</sub> <92% plus any of:</td>
</tr>
<tr>
<td>No clinical features of severe asthma</td>
<td>Too breathless to talk or eat</td>
<td>Silent chest</td>
</tr>
<tr>
<td>Every 20–30 minutes according to response</td>
<td>Heart rate >140/min</td>
<td>Poor respiratory effort</td>
</tr>
<tr>
<td>Consider prednisolone 20 mg</td>
<td>Respiratory rate >40/min</td>
<td>Agitation</td>
</tr>
<tr>
<td>Reassess within 1 hour</td>
<td>Use of accessory neck muscles</td>
<td>Confusion</td>
</tr>
<tr>
<td>First-line treatments</td>
<td>First-line treatments</td>
<td>First-line treatments</td>
</tr>
<tr>
<td>Oxygen via face mask/nasal prongs to achieve SpO<sub>2</sub> 94–98%</td>
<td>Nebulised β<sub>2</sub> agonist: salbutamol 2.5 mg plus ipratropium bromide 0.25 mg nebulised</td>
<td>Nebulised β<sub>2</sub> agonist: salbutamol 5 mg plus ipratropium bromide 0.25 mg nebulised</td>
</tr>
<tr>
<td>Continue bronchodilators 1–4 hours as necessary</td>
<td>Repeat bronchodilators every 20–30 minutes</td>
<td>Repeat bronchodilators every 20–30 minutes</td>
</tr>
<tr>
<td>Continue 20–30 minute nebulisers</td>
<td>Consider adding 150 mg MgSO₄ to each β<sub>2</sub> agonist/ipratropium nebuliser in first hour</td>
<td>Consider adding 150 mg MgSO₄ to each β<sub>2</sub> agonist/ipratropium nebuliser in first hour</td>
</tr>
<tr>
<td>Discuss with senior clinician, PICU team or paediatrician</td>
<td>Discuss with senior clinician, PICU team or paediatrician</td>
<td>Discuss with senior clinician, PICU team or paediatrician</td>
</tr>
<tr>
<td>RESPONDING</td>
<td>RESPONDING</td>
<td>RESPONDING</td>
</tr>
<tr>
<td>Continue bronchodilators 1–4 hours as necessary</td>
<td>Continue bronchodilators 1–4 hours as necessary</td>
<td>Continue 20–30 minute nebulisers</td>
</tr>
<tr>
<td>Review inhaler technique</td>
<td>Discuss with senior clinician, paediatrician or PICU</td>
<td>Consider admission to HDU/PICU</td>
</tr>
<tr>
<td>Provide a written asthma action plan for treating future attacks</td>
<td>Consider admission to HDU/PICU</td>
<td>Consider risks and benefits of:</td>
</tr>
<tr>
<td>Continue 20–30 minute nebulisers</td>
<td>Discharge when stable on 4–hourly treatment</td>
<td>Bolus IV infusion of magnesium sulphate 40 mg/kg (max 2 g) over 20 minutes</td>
</tr>
<tr>
<td>Review the need for regular treatment and the use of inhaled steroids</td>
<td>Consider prednisolone 30–40 mg daily for 3–5 days or until symptoms have settled</td>
<td>Bolus IV salbutamol 15 micrograms/kg if not already given</td>
</tr>
<tr>
<td>Review inhaler technique</td>
<td>At discharge</td>
<td>Continuous IV salbutamol infusion 1–5 micrograms/kg/min (200 micrograms/ml solution)</td>
</tr>
<tr>
<td>Arrange GP follow up within 48 hours</td>
<td>Ensure stable on 4–hourly inhaled treatment</td>
<td>IV aminophylline 5 mg/kg loading dose over 20 minutes (omit in those receiving oral theophyllines) followed by continuous infusion 1 mg/kg/hour</td>
</tr>
<tr>
<td>Arrange hospital asthma clinic follow up in 4–6 weeks</td>
<td>Review the need for regular treatment and the use of inhaled steroids</td>
<td>Consider risks and benefits of:</td>
</tr>
</tbody>
</table>

Age >5 years

<table>
<thead>
<tr>
<th>Moderate asthma</th>
<th>Moderate asthma</th>
<th>Life-threatening asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESS AND RECORD ASTHMA SEVERITY</td>
<td>ASSESS AND RECORD ASTHMA SEVERITY</td>
<td>ASSESS AND RECORD ASTHMA SEVERITY</td>
</tr>
<tr>
<td>SpO<sub>2</sub> ≥92%</td>
<td>PEF >50% best or predicted</td>
<td>SpO<sub>2</sub> <92% plus any of:</td>
</tr>
<tr>
<td>No clinical features of severe asthma</td>
<td>No clinical features of severe asthma</td>
<td>Silent chest</td>
</tr>
<tr>
<td>Every 20–30 minutes according to response</td>
<td>Heart rate >125/min</td>
<td>Poor respiratory effort</td>
</tr>
<tr>
<td>Consider prednisolone 20 mg</td>
<td>Respiratory rate >30/min</td>
<td>Agitation</td>
</tr>
<tr>
<td>Reassess within 1 hour</td>
<td>Use of accessory neck muscles</td>
<td>Confusion</td>
</tr>
<tr>
<td>First-line treatments</td>
<td>First-line treatments</td>
<td>First-line treatments</td>
</tr>
<tr>
<td>Oxygen via face mask/nasal prongs to achieve SpO<sub>2</sub> 94–98%</td>
<td>Nebulised β<sub>2</sub> agonist: salbutamol 2.5 mg plus ipratropium bromide 0.25 mg nebulised</td>
<td>Nebulised β<sub>2</sub> agonist: salbutamol 5 mg plus ipratropium bromide 0.25 mg nebulised</td>
</tr>
<tr>
<td>Continue bronchodilators 1–4 hours as necessary</td>
<td>Repeat bronchodilators every 20–30 minutes</td>
<td>Repeat bronchodilators every 20–30 minutes</td>
</tr>
<tr>
<td>Continue 20–30 minute nebulisers</td>
<td>Consider adding 150 mg MgSO₄ to each β<sub>2</sub> agonist/ipratropium nebuliser in first hour</td>
<td>Consider adding 150 mg MgSO₄ to each β<sub>2</sub> agonist/ipratropium nebuliser in first hour</td>
</tr>
<tr>
<td>Discuss with senior clinician, PICU team or paediatrician</td>
<td>Discuss with senior clinician, PICU team or paediatrician</td>
<td>Discuss with senior clinician, PICU team or paediatrician</td>
</tr>
<tr>
<td>RESPONDING</td>
<td>RESPONDING</td>
<td>RESPONDING</td>
</tr>
<tr>
<td>Continue bronchodilators 1–4 hours as necessary</td>
<td>Continue bronchodilators 1–4 hours as necessary</td>
<td>Continue 20–30 minute nebulisers</td>
</tr>
<tr>
<td>Review the need for regular treatment and the use of inhaled steroids</td>
<td>Discuss when stable on 4–hourly treatment</td>
<td>Consider admission to HDU/PICU</td>
</tr>
<tr>
<td>Review inhaler technique</td>
<td>Consider prednisolone 30–40 mg daily for 3–5 days or until symptoms have settled</td>
<td>Consider risks and benefits of:</td>
</tr>
<tr>
<td>Provide a written asthma action plan for treating future attacks</td>
<td>At discharge</td>
<td>Bolus IV infusion of magnesium sulphate 40 mg/kg (max 2 g) over 20 minutes</td>
</tr>
<tr>
<td>Continue 20–30 minute nebulisers</td>
<td>Ensure stable on 4–hourly inhaled treatment</td>
<td>Bolus IV salbutamol 15 micrograms/kg if not already given</td>
</tr>
<tr>
<td>Review the need for regular treatment and the use of inhaled steroids</td>
<td>Review the need for regular treatment and the use of inhaled steroids</td>
<td>Continuous IV salbutamol infusion 1–5 micrograms/kg/min (200 micrograms/ml solution)</td>
</tr>
<tr>
<td>Review inhaler technique</td>
<td>Review inhaler technique</td>
<td>IV aminophylline 5 mg/kg loading dose over 20 minutes (omit in those receiving oral theophyllines) followed by continuous infusion 1 mg/kg/hour</td>
</tr>
</tbody>
</table>

NB: If a patient has signs and symptoms across categories, always treat according to their most severe features.

Annexes

Annex 7

British guideline on the management of asthma
Management of acute asthma in infants aged <2 years in hospital

ASSESS AND RECORD ASTHMA SEVERITY

NB: If a patient has signs and symptoms across categories, always treat according to their most severe features

<table>
<thead>
<tr>
<th>Moderate asthma</th>
<th>Acute severe asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>• SpO₂ ≥92%</td>
<td>• SpO₂ <92%</td>
</tr>
<tr>
<td>• Audible wheezing</td>
<td>• Cyanosis</td>
</tr>
<tr>
<td>• Using accessory muscles</td>
<td>• Marked respiratory distress</td>
</tr>
<tr>
<td>• Still feeding</td>
<td>• Too breathless to feed</td>
</tr>
</tbody>
</table>

Most infants are audibly wheezy with intercostal recession but not distressed. Life-threatening features include apnoea, bradycardia and poor respiratory effort.

First-line treatments

Immediate management

Oxygen via close-fitting face mask or nasal prongs to achieve normal saturations

Give trial of β₂ agonist: salbutamol up to 10 puffs via spacer (given one puff at a time inhaled separately using tidal breathing) and face mask or nebulised salbutamol 2.5 mg

Repeat β₂ agonist every 1–4 hours if responding

If poor response:

Add 0.25 mg nebulised ipratropium bromide to each β₂ agonist nebuliser every 20–30 minutes for 1–2 hours

Consider: Oral prednisolone 10 mg daily for up to 3 days

Monitoring

Continuous close monitoring of:

- heart rate
- pulse rate
- pulse oximetry

Supportive nursing care with adequate hydration

Consider the need for a chest X-ray

Second-line treatments

- If not responding or has any life-threatening features, discuss with senior paediatrician or PICU team
- Consider alternative diagnoses
- Consider second-line treatments as per Annex 7 with extreme caution

1 Management of acute asthma in children under 1 year should be under the direction of a respiratory paediatrician.
1. At least 1 in 10 cases of new or reappearance of childhood asthma in adult life are attributable to occupation.

2. Enquire of adult patients with rhinitis or asthma about their job and the materials with which they work.

3. Rhino-conjunctivitis may precede IgE-associated occupational asthma; the risk of developing asthma being highest in the year after the onset of rhinitis.

4. The prognosis of occupational asthma is improved by early identification and early avoidance of further exposure to its cause.

5. Confirm a diagnosis supported by objective criteria and not on the basis of a compatible history alone because of the potential implications for employment.

6. Arrange for workers whom you suspect of having work-related asthma to perform serial peak flow measurements at least four times a day.

Guidelines for the Identification, Management and Prevention of Occupational Asthma • www.bohrf.org.uk/content/asthma.htm
My asthma triggers
Taking my asthma medicine each day will help reduce my reaction to these triggers. Avoiding them where possible will also help.

My asthma review
I should have at least one routine asthma review every year. I will bring:
- My action plan to see if it needs updating
- My inhaler and spacer to check I’m using them in the best way
- Any questions about my asthma and how to cope with it.

Next asthma review date: __/__/____

GP/asthma nurse contact
Name:
Phone number:

Out-of-hours contact number
(ask your GP surgery who to call when they are closed)
Name:
Phone number:

Get more advice & support from Asthma UK:
- Speak to a specialist asthma nurse about managing your asthma on: 0300 222 5800
- Get news, advice and download information packs at: www.asthma.org.uk
- Use it, don’t lose it!

If you use a written asthma action plan you are four times less likely to be admitted to hospital for your asthma.*

Your asthma action plan
Fill this in with your GP or asthma nurse

The step-by-step guide that helps you stay on top of your asthma

Your action plan is a personal guide to help you stay on top of your asthma. Once you have created one with your GP or asthma nurse, it can help you stay as well as possible.

People who use their action plans are four times less likely to end up in hospital because of their asthma.

Your action plan will only work at its best to help keep you healthy if you:

1. Put it somewhere easy for you and your family to find – you could try your fridge door, the back of your front door, or your bedside table. Try taking a photo and keeping it on your mobile phone or tablet.

2. Check in with it regularly – put a note on your calendar, or a reminder on your mobile to read it through once a month. How are you getting along with your day-to-day asthma medicines? Are you having any asthma symptoms? Are you clear about what to do?

3. Keep a copy near you – save a photo on your phone or as your screensaver. Or keep a leaflet in your bag, desk or car glove box.

4. Give a copy of your action plan or share a photo of it with a key family member or friend – ask them to read it. Talk to them about your usual asthma symptoms so they can help you notice if they start. Help them know what to do in an emergency.

5. Take it to every healthcare appointment – including A&E/consultant. Ask your GP or asthma nurse to update it if any of their advice for you changes. Ask them for tips if you’re finding it hard to take your medicines as prescribed.

Any asthma questions?
Call our friendly helpline nurses 0300 222 5800
(9am – 5pm; Mon – Fri)

www.asthma.org.uk

*Adams et al; Factors associated with hospital admissions and repeat emergency department visits for adults with asthma; Thorax 2000;55:566–573
Annex 10 contd.

Every day asthma care:

- **My personal best peak flow is:**

- **My preventer inhaler (insert name/colour):**

- I need to take my preventer inhaler every day even when I feel well.

- I take
 - puff(s) in the morning
 - puff(s) at night.

- My reliever inhaler (insert name/colour):

- I take my reliever inhaler only if I need to

- If I'm wheezing
 - I take
 - puff(s) of my reliever inhaler

- If my chest feels tight
 - I take
 - puff(s) of my reliever inhaler

- If I'm finding it hard to breathe
 - I take
 - puff(s) of my reliever inhaler

- If I'm coughing
 - I take
 - puff(s) of my reliever inhaler

Other medicines I take for my asthma every day:

- **With this daily routine I should expect/aim to have no symptoms.**

- **If I haven’t had any symptoms or needed my reliever inhaler for at least 12 weeks, ask my GP or asthma nurse to review my medicines in case they can be reduced.**

In an asthma attack:

- **When I feel worse:**

 - My symptoms are coming back (wheeze, tightness in my chest, feeling breathless, cough)
 - I am waking up at night
 - My symptoms are interfering with my usual day-to-day activities (e.g. work, exercising)

- **If I feel worse at any point while I’m using my inhaler:**

 - (A) If I don’t feel any better after 10 puffs, keep taking the same puffs every four hours.
 - (B) If I feel better after 10 puffs, but don’t improve within 24 hours, make an urgent same-day appointment with my GP or asthma nurse.

- **If I feel better, and have made my urgent same-day appointment:**

 - Check if I’ve been given rescue prednisolone tablets (steroid tablets) to keep at home:
 - If I have these I should take:
 - mg of prednisolone tablets (which is x 5mg)
 - Call my GP or asthma nurse today and let them know I have started taking steroids and make an appointment to be seen within 24 hours.

- **If I have been given prednisolone tablets (steroid tablets) to keep at home:**

 - Take:
 - (which is x 5mg)
 - (a) If I feel better:
 - make an urgent same-day appointment with my GP or asthma nurse.
 - (b) If I don’t feel any better after 10 puffs, keep taking the same puffs every four hours.

- **When I feel better:**

 - In an asthma attack:

 - (A) If I feel worse at any point while I’m using my inhaler:
 - Sit up straight — don’t lie down. Try to keep calm.
 - People with allergies need to be extra careful as attacks can be more severe.
 - (B) If I don’t feel any better after 10 puffs:
 - Ambulance taking longer than 15 minutes?
 - Call 999.
 - Call 999.
 - (C) If I feel better:
 - make an urgent same-day appointment with my GP or asthma nurse.

- **Urgent!** If I don’t improve within 24 hours make an emergency appointment to see my GP or asthma nurse.
References

10 Waring N. Use of new asthma BTM steps in one general practice: should asthmatics no longer on treatment be followed-up? Prim Care Respir J 1997;5:28.

References

British guideline on the management of asthma

References

113 Wensley D, Silverman M. Peak flow monitoring for guided self-management in childhood asthma: a randomized controlled trial. Am J Respir Crit Care Med 2004;170(6):606-12.

References

169 Tapp S, Lasserson TJ, Rowe BH. Education interventions for adults who attend the emergency room for acute asthma. Cochrane Database of Systematic Reviews 2007, issue 3.

<table>
<thead>
<tr>
<th>Reference</th>
</tr>
</thead>
</table>

British guideline on the management of asthma

274 Kramer MS, Kakuma R. Maternal dietary antigen avoidance during pregnancy or lactation, or both, for preventing or treating atopic disease in the child. Cochrane Database of Systematic Reviews 2012, Issue 9.

322 Murray AB, Morrison BJ. The decrease in severity of asthma in children of parents who smoke since the parents have been exposing them to less cigarette smoke. J Allergy Clin Immunol 1993;91(1 Pt 1):102-10.

Ardern KD, Ram FS. Dietary salt reduction or exclusion for allergic asthma. Cochrane Database of Systematic Reviews 2001, Issue 4.

Ram FS, Rowe BH, Kaur B, Vitamin C supplementation for asthma. Cochrane Database of Systematic Reviews 2004, Issue 3.

References

357 Adeniyi FB, Young T. Weight loss interventions for chronic asthma. Cochrane Database of Systematic Reviews 2012, Issue 7.

British guideline on the management of asthma

392 Holloway E, Ram FS. Breathing exercises for asthma. Cochrane Database of Systematic Reviews 2004, Issue 1.

References
British guideline on the management of asthma

504 Quon BS, FitzGerald JM, Lemière C, Shahidi N, Ducharme FM. Increased versus stable doses of inhaled corticosteroids for exacerbations of chronic asthma in adults and children. Cochrane Database of Systematic Reviews 2010, Issue 12.

520 Wark PA, Gibson PG, Wilson A. Azoles for allergic bronchopulmonary aspergillosis associated with asthma Cochrane Database of Systematic Reviews 2004, Issue 3.

Ram FS, Wright J, Broeklebank D, White JE. Systematic review of clinical effectiveness of pressurised metered dose inhalers versus other hand held inhaler devices for delivering beta(2) agonists bronchodilators in asthma. BMJ 2001;323(7318):901-5.

Suisse S, Blais L, Ernst P. Patterns of increasing beta-agonist use and the risk of fatal or near-fatal asthma. Eur Respir J 1994;7(9):1602-9.

British guideline on the management of asthma

593 RoweBH, SpoonerC, DucharmeF, BreztlaffJ, Bota G. Corticosteroids for preventing relapse following acute exacerbations of asthma. Cochrane Database of Systematic Reviews 2007, Issue 3.

604 WattsK, ChavasseRJPG. Leukotriene receptor antagonists in addition to usual care for acute asthma in adults and children. Cochrane Database of Systematic Reviews 2012, Issue 5.

627 Udwadia ZF, Harrison BD. An attempt to determine the optimal duration of hospital stay following a severe attack of asthma. J R Coll Physicians Lond 1990;24(1):112-4.

British guideline on the management of asthma

655 Edmonds ML, Brenner BE, Camargo CA, Rowe BH. Inhaled steroids in acute asthma following emergency department discharge. Cochrane Database of Systematic Reviews 2000, Issue 3.

659 Volovitz B, Bilavsky E, Nussinovitch M. Effectiveness of high repeated doses of inhaled budesonide or fluticasone in controlling acute asthma exacerbations in young children. J Asthma 2008;45(7):561-7.

663 Travers AH, Jones AP, Camargo CA, Milan SJ, Rowe BH. Intravenous beta2-agonists versus intravenous aminophylline for acute asthma. Cochrane Database of Systematic Reviews 2012, Issue 12.

British guideline on the management of asthma

198 |

199 |

200 |

201 |

202 |

203 |

204 |

205 |

206 |

207 |

208 |

209 |

210 |

211 |

References

British guideline on the management of asthma

772 Bender BG. Risk taking, depression, adherence, and symptom control in adolescents and young adults with asthma. Am J Respir Crit Care Med 2006;173(9):953-7.

References

793 Murphy VE, Clifton VL, Gibson PG. Asthma exacerbations during pregnancy: incidence and association with adverse pregnancy outcomes. Thorax 2006;61(2):169-76.

References

British guideline on the management of asthma

932 Baishnab E, Karner C. Primary care based clinics for asthma. Cochrane Database of Systematic Reviews 2012, Issue 4.

942 DiBello K, Boyar K, Abrenica S, Worrall PS. The effectiveness of text messaging programs on adherence to treatment regimens among adults aged 18 to 45 years diagnosed with asthma: a systematic review. JBI Database of Systematic Reviews and Implementation Reports 2014;12(1):485-532.

The Healthcare Environment Inspectorate, the Scottish Health Council, the Scottish Health Technologies Group, the Scottish Intercollegiate Guidelines Network (SIGN) and the Scottish Medicines Consortium are key components of our organisation.